绿化
植被(病理学)
环境科学
高原(数学)
全球变暖
气候变化
地质学
生态学
海洋学
医学
数学分析
数学
病理
生物
作者
Ning Li,Lei Wang,Deliang Chen
标识
DOI:10.1038/s41612-024-00651-z
摘要
Abstract Vegetation changes are expected to alter soil thermal regimes, consequently modifying climate feedbacks related to frozen ground thawing and carbon cycling in cold regions. The Tibetan Plateau (TP) contains diverse alpine ecosystems and the largest area of frozen ground in low–mid latitude regions. Evidence suggests ongoing vegetation greening and permafrost degradation during the past several decades on the TP. However, the effect of vegetation changes on soil thermal regimes on the TP is not well understood. Here, we quantify the response of shallow soil temperature change to vegetation greening on the TP using remote–sensing data, in–situ observations, and physics–based modelling. Our results show that over the past 20 years, vegetation greening on the TP was accompanied a notable decrease in the area of bare land by approximately 0.7% (5000 km 2 ). Annual mean soil temperature showed a significant warming trend of 0.57 °C decade –1 ( p < 0.05) during the period 1983–2019, exceeding the warming rate of surface air temperature. Changes in vegetation resulted in a warming effect on annual shallow soil temperature of 0.15 ± 0.33 °C across the TP during the period 2000–2019. The warming effect varies with frozen soil types: 0.24 ± 0.48 °C in permafrost, 0.18 ± 0.36 °C in seasonally frozen ground, and 0.11 ± 0.32 °C in unfrozen ground. The net warming effect was caused by a decrease in albedo and increase in radiation penetrating the canopy, outweighing the cooling effect related to a limited increase in evapotranspiration.
科研通智能强力驱动
Strongly Powered by AbleSci AI