Non-monotonic effect of compaction on longitudinal dispersion coefficient of porous media

单调函数 压实 材料科学 多孔介质 色散(光学) 机械 多孔性 复合材料 数学分析 数学 光学 物理
作者
Yang Liu,Weibo Gong,Han Xiao,Moran Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:988
标识
DOI:10.1017/jfm.2024.454
摘要

Utilizing the discrete element method and the pore network model, we numerically investigate the impact of compaction on the longitudinal dispersion coefficient of porous media. Notably, the dispersion coefficient exhibits a non-monotonic dependence on the degree of compaction, which is distinguished by the presence of three distinct regimes in the variation of dispersion coefficient. The non-monotonic variation of dispersion coefficient is attributed to the disparate effect of compaction on dispersion mechanisms. Specifically, the porous medium tightens with an increasing pressure load, reducing the effect of molecular diffusion that primarily governs at small Péclet numbers. On the other hand, heightened pressure loads enhance the heterogeneity of pore structures, resulting in increased disorder and a higher proportion of stagnant zones within porous media flow. These enhancements further strengthen mechanical dispersion and hold-up dispersion, respectively, both acting at higher Péclet numbers. It is crucial to highlight that hold-up dispersion is induced by the low-velocity regions in porous media flow, which differ fundamentally from zero-velocity regions (such as dead-ends or the interior of permeable grains) as described by the classical theory of dispersion. The competition between weakened molecular diffusion and enhanced hold-up dispersion and mechanical dispersion, together with the shift in the dominance of dispersion mechanisms across various Péclet numbers, results in multiple regimes in the variation of dispersion coefficients. Our study provides unique insights into structural design and modulation of the dispersion coefficient of porous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Chan0501采纳,获得10
1秒前
fancy完成签到 ,获得积分10
1秒前
Maglev发布了新的文献求助10
2秒前
2秒前
含糊的代丝完成签到 ,获得积分10
2秒前
2秒前
3秒前
小九发布了新的文献求助20
3秒前
zhui发布了新的文献求助10
4秒前
通达完成签到,获得积分10
5秒前
FashionBoy应助猪猪hero采纳,获得10
5秒前
jy发布了新的文献求助10
5秒前
祥云完成签到,获得积分10
5秒前
无敌鱼完成签到,获得积分10
6秒前
ffu完成签到 ,获得积分10
6秒前
天天快乐应助好的采纳,获得10
6秒前
6秒前
香蕉觅云应助科研小白花采纳,获得10
6秒前
18746005898发布了新的文献求助10
7秒前
科研通AI5应助fanfan44390采纳,获得10
7秒前
7秒前
7秒前
小刺猬完成签到,获得积分10
7秒前
小庄发布了新的文献求助10
7秒前
唐人雄发布了新的文献求助10
8秒前
英姑应助Khr1stINK采纳,获得10
8秒前
爆米花应助甜筒采纳,获得10
8秒前
Gang完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
9秒前
Hello应助潇洒的青采纳,获得10
9秒前
9秒前
共享精神应助长孙归尘采纳,获得10
9秒前
10秒前
Evan123发布了新的文献求助10
10秒前
11秒前
xctdyl1992发布了新的文献求助10
11秒前
11秒前
Su完成签到,获得积分10
11秒前
俗丨完成签到,获得积分10
12秒前
科研通AI5应助海底落日采纳,获得30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794