Revolutionizing Combat Casualty Care: The Power of Digital Twins in Optimizing Casualty Care Through Passive Data Collection

医疗急救 背景(考古学) 数据收集 医疗保健 军事医学 计算机科学 医学 计算机安全 运筹学 工程类 政治学 统计 数学 古生物学 法学 生物
作者
Jeremy Pamplin,Mason H Remondelli,Darshan Thota,Jeremy Trapier,William T. Davis,Nathan Fisher,Paul O Kwon,Matthew T. Quinn
出处
期刊:Military Medicine [Oxford University Press]
被引量:1
标识
DOI:10.1093/milmed/usae249
摘要

ABSTRACT The potential impact of large-scale combat operations and multidomain operations against peer adversaries poses significant challenges to the Military Health System including large volumes of critically ill and injured casualties, prolonged care times in austere care contexts, limited movement, contested logistics, and denied communications. These challenges contribute to the probability of higher casualty mortality and risk that casualty care hinders commanders’ forward momentum or opportunities for overmatch on the battlefield. Novel technical solutions and associated concepts of operation that fundamentally change the delivery of casualty care are necessary to achieve desired medical outcomes that include maximizing Warfighter battle-readiness, minimizing return-to-duty time, optimizing medical evacuation that clears casualties from the battlefield while minimizing casualty morbidity and mortality, and minimizing resource consumption across the care continuum. These novel solutions promise to “automate” certain aspects of casualty care at the level of the individual caregiver and the system level, to unburden our limited number of providers to do more and make better (data-driven) decisions. In this commentary, we describe concepts of casualty digital twins—virtual representations of a casualty’s physical journey through the roles of care—and how they, combined with passive data collection about casualty status, caregiver actions, and real-time resource use, can lead to human–machine teaming and increasing automation of casualty care across the care continuum while maintaining or improving outcomes. Our path to combat casualty care automation starts with mapping and modeling the context of casualty care in realistic environments through passive data collection of large amounts of unstructured data to inform machine learning models. These context-aware models will be matched with patient physiology models to create casualty digital twins that better predict casualty needs and resources required and ultimately inform and accelerate decision-making across the continuum of care. We will draw from the experience of the automotive industry as an exemplar for achieving automation in health care and inculcate automation as a mechanism for optimizing the casualty care survival chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助pp采纳,获得10
1秒前
快乐烧鹅发布了新的文献求助10
2秒前
顾矜应助老八采纳,获得10
5秒前
7秒前
ty完成签到,获得积分10
8秒前
渭水飞熊完成签到,获得积分10
11秒前
明天更好发布了新的文献求助10
11秒前
12秒前
Jenkang给Jenkang的求助进行了留言
13秒前
zxh完成签到,获得积分20
13秒前
14秒前
Ava应助流川枫采纳,获得10
16秒前
研友_VZG7GZ应助快乐烧鹅采纳,获得10
17秒前
科研通AI2S应助清爽的诗云采纳,获得10
18秒前
沉静的奇异果完成签到,获得积分10
19秒前
酷波er应助明天更好采纳,获得10
21秒前
21秒前
ding应助blessing采纳,获得10
22秒前
李爱国应助guchenniub采纳,获得10
22秒前
23秒前
24秒前
安娜完成签到,获得积分10
25秒前
无奈镜子发布了新的文献求助10
25秒前
乔木木发布了新的文献求助10
25秒前
小蘑菇应助三毛采纳,获得10
26秒前
领导范儿应助洁净亦巧采纳,获得10
27秒前
懒洋洋完成签到 ,获得积分10
27秒前
Ma发布了新的文献求助10
29秒前
30秒前
30秒前
流川枫给流川枫的求助进行了留言
31秒前
guchenniub发布了新的文献求助10
34秒前
小于发布了新的文献求助10
35秒前
xun发布了新的文献求助10
35秒前
lll发布了新的文献求助10
38秒前
39秒前
小鸭子应助Ma采纳,获得10
40秒前
43秒前
jylz完成签到 ,获得积分10
43秒前
zxh发布了新的文献求助10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945967
关于积分的说明 8527797
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433891
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637