Study on the Characteristics of Thermal Runaway Expansion Force of LiNi0.5Co0.2Mn0.3O2/Graphite Lithium-ion Batteries with Different SOCs

热失控 石墨 锂(药物) 热膨胀 材料科学 离子 核工程 复合材料 化学 物理 热力学 电池(电) 工程类 内分泌学 功率(物理) 有机化学 医学
作者
Qi Chuang,Yan Hongtao,Yang Ju,Lin Chunjing,Zhou Yapeng,Yuanzhi Hu,Bin Chen
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:495: 144448-144448 被引量:4
标识
DOI:10.1016/j.electacta.2024.144448
摘要

In recent years, lithium-ion batteries have been widely adopted by the automotive industry because of their high energy density and environmentally friendly nature. However, the thermal runaway of lithium-ion batteries poses a significant risk of explosions, fires, and other hazards. Therefore, it is crucial to have effective thermal runaway warning systems to enhance the safety of battery applications. Currently, the main warning signals for thermal runaway include voltage, temperature, internal resistance, gas composition, and smoke. However, these signals suffer from issues such as low accuracy and delayed warnings. During thermal runaway, voltage, temperature, internal resistance, expansion force, and smoke undergo abnormal changes at varying times, with expansion force abnormalities detected notably earlier. To improve the accuracy and timeliness of thermal runaway warnings, it is crucial to quantitatively measure the changes in expansion force and signal progression related to voltage and temperature during thermal runaway through experiments. In this study, the 51 Ah LiNi0.5Co0.2Mn0.3O2/Graphite commercialized Li-ion batteries were used to study the characteristics of thermal runaway expansion force at different states of charge (SOCs) (25%, 50%, 100%, 110%). The variation patterns of thermal runaway parameters such as temperature, voltage, internal resistance, expansion force, and flame were analyzed. The test results indicate that the expansion force in lithium-ion batteries is related to the lithium-ion concentration in the negative electrode and remains below 2000 N with a rate of change under 1.8 N/s during normal charging and discharging. However, it surpasses 5000 N for thermal runaway. This paper suggests using a 2000 N expansion force as an early warning signal for thermal runaway, which precedes approximately 11.6 s earlier than the voltage signal and 10 s earlier than the internal resistance and temperature signals. Adopting a 1.8 N/s growth rate can further enhance warning time, issuing alerts 134.2 s before thermal runaway. Research confirms that using expansion force as the main signal significantly improves warning time and alarm accuracy in lithium-ion battery safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aslink发布了新的文献求助10
刚刚
111发布了新的文献求助10
刚刚
知性的成关注了科研通微信公众号
1秒前
1秒前
冽飏完成签到,获得积分20
1秒前
斯文冷亦发布了新的文献求助10
2秒前
1177完成签到,获得积分20
2秒前
yang完成签到 ,获得积分10
2秒前
2秒前
刘钱美子发布了新的文献求助10
4秒前
x1发布了新的文献求助10
5秒前
无糖的问题完成签到,获得积分20
5秒前
jjy完成签到 ,获得积分10
5秒前
bkagyin应助余佘采纳,获得30
5秒前
6秒前
毕业完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
不吃香菇完成签到,获得积分10
7秒前
星辰大海应助仲夏采纳,获得10
7秒前
Bronx发布了新的文献求助30
8秒前
8秒前
TomTonyy完成签到,获得积分10
9秒前
CodeCraft应助DZ采纳,获得10
10秒前
岁月神偷发布了新的文献求助10
10秒前
小蘑菇应助斯文冷亦采纳,获得30
10秒前
10秒前
10秒前
嘻嘻完成签到,获得积分10
10秒前
爆米花应助小赵采纳,获得10
10秒前
轻松盼雁发布了新的文献求助10
11秒前
包容昊强完成签到,获得积分10
11秒前
11秒前
四氟硼酸盐完成签到,获得积分10
12秒前
xiebaoshu发布了新的文献求助10
12秒前
12秒前
李爱国应助娇气的雁兰采纳,获得10
13秒前
机灵的沛槐完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738