Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems

觅食 元启发式 饲料 水准点(测量) 季节性繁殖者 趋同(经济学) 计算机科学 算法 人工智能 机器学习 生态学 地理 生物 大地测量学 经济增长 经济
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Apu Kumar Saha,Jayanta Pal,Laith Abualigah,Seyedali Mirjalili
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (11): e31629-e31629 被引量:29
标识
DOI:10.1016/j.heliyon.2024.e31629
摘要

This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The optimization process of GCRA is inspired by the intelligent foraging behaviors of greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails as they forage through reeds and grass. Such trails would subsequently lead to food and water sources and shelter. The exploration phase is achieved when they leave the different shelters scattered around their territory to forage and leave trails. It is presumed that the alpha male maintains knowledge about these routes, and as a result, other rats modify their location according to this information. Also, the males are aware of the breeding season and separate themselves from the group. The assumption is that once the group is separated during this season, the foraging activities are concentrated within areas of abundant food sources, which aids the exploitation. Hence, the smart foraging paths and behaviors during the mating season are mathematically represented to realize the design of the GCR algorithm and carry out the optimization tasks. The performance of GCRA is tested using twenty-two classical benchmark functions, ten CEC 2020 complex functions, and the CEC 2011 real-world continuous benchmark problems. To further test the performance of the proposed algorithm, six classic problems in the engineering domain were used. Furthermore, a thorough analysis of computational and convergence results is presented to shed light on the efficacy and stability levels of GCRA. The statistical significance of the results is compared with ten state-of-the-art algorithms using Friedman's and Wilcoxon's signed rank tests. These findings show that GCRA produced optimal or nearly optimal solutions and evaded the trap of local minima, distinguishing it from the rival optimization algorithms employed to tackle similar problems. The GCRA optimizer source code is publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
忧郁芹菜完成签到,获得积分20
2秒前
圣殿幻龙完成签到,获得积分10
3秒前
东山发布了新的文献求助10
3秒前
NexusExplorer应助单纯的寄云采纳,获得10
3秒前
祁媛媛完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
LJ完成签到,获得积分10
7秒前
10秒前
LJ发布了新的文献求助10
10秒前
wanci应助FengXY采纳,获得10
10秒前
12秒前
13秒前
小木棉发布了新的文献求助10
13秒前
yeyeye发布了新的文献求助10
14秒前
糯鱼鱼ovo完成签到 ,获得积分10
15秒前
16秒前
共享精神应助地表飞猪采纳,获得10
16秒前
wanci应助地表飞猪采纳,获得20
16秒前
一只贝果完成签到,获得积分10
17秒前
新晨发布了新的文献求助10
17秒前
shj完成签到 ,获得积分10
18秒前
19秒前
美满夏寒完成签到,获得积分10
20秒前
20秒前
汉堡包应助小马能发sci采纳,获得10
21秒前
21秒前
23秒前
zxcvbnm完成签到,获得积分10
26秒前
tassssadar完成签到,获得积分10
28秒前
在水一方应助水悟子采纳,获得10
29秒前
NexusExplorer应助猫与咖啡采纳,获得10
30秒前
JPH1990应助谷先森采纳,获得10
32秒前
34秒前
35秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708026
求助须知:如何正确求助?哪些是违规求助? 3256550
关于积分的说明 9900907
捐赠科研通 2969089
什么是DOI,文献DOI怎么找? 1628320
邀请新用户注册赠送积分活动 772115
科研通“疑难数据库(出版商)”最低求助积分说明 743639