Enhanced thyroid nodule segmentation through U-Net and VGG16 fusion with feature engineering: A comprehensive study

特征(语言学) 分割 计算机科学 甲状腺 人工智能 结核(地质) 模式识别(心理学) 医学 内科学 生物 古生物学 哲学 语言学
作者
Mehdi Etehadtavakol,Mahnaz Etehadtavakol,E. Y. K. Ng
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:251: 108209-108209 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108209
摘要

The thyroid gland, a key component of the endocrine system, is pivotal in regulating bodily functions. Thermography, a non-invasive imaging technique utilizing infrared cameras, has emerged as a diagnostic tool for thyroid-related conditions, offering advantages such as early detection and risk stratification. Artificial intelligence (AI) has demonstrated success in medical diagnostics, and its integration into thermal imaging analysis holds promise for improving diagnostic capabilities. This study aims to explore the potential of AI, specifically convolutional neural networks (CNNs), in enhancing the analysis of thyroid thermograms for the detection of nodules and abnormalities. Artificial intelligence (AI) and machine learning techniques are integrated to enhance thyroid thermal image analysis. Specifically, a fusion of U-Net and VGG16, combined with feature engineering (FE), is proposed for accurate thyroid nodule segmentation. The novelty of this research lies in leveraging feature engineering in transfer learning for the segmentation of thyroid nodules, even in the presence of a limited dataset. The study presents results from four conducted studies, demonstrating the efficacy of this approach even with a limited dataset. It's observed that in study 4, using FE has led to a significant improvement in the value of the dice coefficient. Even for the small size of the masked region, incorporating radiomics with FE resulted in significant improvements in the segmentation dice coefficient. It's promising that one can achieve higher dice coefficients by employing different models and refining them. The findings here underscore the potential of AI for precise and efficient segmentation of thyroid nodules, paving the way for improved thyroid health assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的猕猴桃完成签到,获得积分20
刚刚
刚刚
1秒前
无限元风发布了新的文献求助10
1秒前
Vaying发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
拾贰月发布了新的文献求助10
4秒前
5秒前
妮妮发布了新的文献求助20
5秒前
5秒前
草莓小酒发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得20
6秒前
一一应助科研通管家采纳,获得10
6秒前
kento应助科研通管家采纳,获得100
7秒前
一一应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
kento应助科研通管家采纳,获得100
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Frank应助科研通管家采纳,获得30
7秒前
Orange应助科研通管家采纳,获得10
7秒前
热心的匕应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
97发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
lucy完成签到,获得积分10
8秒前
今后应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Windy发布了新的文献求助10
8秒前
无辜问枫完成签到,获得积分10
9秒前
科研通AI2S应助坚定白筠采纳,获得10
9秒前
9秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138178
求助须知:如何正确求助?哪些是违规求助? 2789056
关于积分的说明 7790034
捐赠科研通 2445505
什么是DOI,文献DOI怎么找? 1300440
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046