Enhanced thyroid nodule segmentation through U-Net and VGG16 fusion with feature engineering: A comprehensive study

特征(语言学) 分割 计算机科学 甲状腺 人工智能 结核(地质) 模式识别(心理学) 医学 内科学 生物 古生物学 哲学 语言学
作者
Mehdi Etehadtavakol,Mahnaz Etehadtavakol,E. Y. K. Ng
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:251: 108209-108209 被引量:6
标识
DOI:10.1016/j.cmpb.2024.108209
摘要

The thyroid gland, a key component of the endocrine system, is pivotal in regulating bodily functions. Thermography, a non-invasive imaging technique utilizing infrared cameras, has emerged as a diagnostic tool for thyroid-related conditions, offering advantages such as early detection and risk stratification. Artificial intelligence (AI) has demonstrated success in medical diagnostics, and its integration into thermal imaging analysis holds promise for improving diagnostic capabilities. This study aims to explore the potential of AI, specifically convolutional neural networks (CNNs), in enhancing the analysis of thyroid thermograms for the detection of nodules and abnormalities. Artificial intelligence (AI) and machine learning techniques are integrated to enhance thyroid thermal image analysis. Specifically, a fusion of U-Net and VGG16, combined with feature engineering (FE), is proposed for accurate thyroid nodule segmentation. The novelty of this research lies in leveraging feature engineering in transfer learning for the segmentation of thyroid nodules, even in the presence of a limited dataset. The study presents results from four conducted studies, demonstrating the efficacy of this approach even with a limited dataset. It's observed that in study 4, using FE has led to a significant improvement in the value of the dice coefficient. Even for the small size of the masked region, incorporating radiomics with FE resulted in significant improvements in the segmentation dice coefficient. It's promising that one can achieve higher dice coefficients by employing different models and refining them. The findings here underscore the potential of AI for precise and efficient segmentation of thyroid nodules, paving the way for improved thyroid health assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖涫完成签到,获得积分10
1秒前
11111发布了新的文献求助10
1秒前
健忘的牛排完成签到,获得积分10
2秒前
wmmm完成签到,获得积分10
2秒前
Akim应助爱吃泡芙采纳,获得10
2秒前
老迟到的书雁完成签到 ,获得积分10
2秒前
2秒前
正经俠发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
学科共进完成签到,获得积分10
5秒前
百草27完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
绵马紫萁发布了新的文献求助10
8秒前
9秒前
fzhou完成签到 ,获得积分10
9秒前
尘雾发布了新的文献求助10
9秒前
10秒前
一一发布了新的文献求助20
10秒前
10秒前
Aixia完成签到 ,获得积分10
11秒前
葡萄糖完成签到,获得积分10
11秒前
哈哈完成签到,获得积分10
11秒前
在水一方应助CC采纳,获得10
11秒前
11秒前
余笙完成签到 ,获得积分10
12秒前
神勇的雅香应助科研混子采纳,获得10
12秒前
TT发布了新的文献求助10
13秒前
李顺完成签到,获得积分20
14秒前
ayin发布了新的文献求助10
14秒前
wait发布了新的文献求助10
14秒前
我是站长才怪应助xg采纳,获得10
15秒前
童话艺术佳完成签到,获得积分10
15秒前
稀罕你完成签到,获得积分10
15秒前
junzilan发布了新的文献求助10
15秒前
anny.white完成签到,获得积分10
16秒前
科研通AI5应助平常的毛豆采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824