Deep learning-based monitoring system for predicting top and bottom bead widths during the laser welding of aluminum alloy

材料科学 有孔小珠 合金 焊接 激光器 激光束焊接 冶金 机械工程 复合材料 工程制图 光学 工程类 物理
作者
Kimoon Nam,Hyungson Ki
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:120: 616-627 被引量:1
标识
DOI:10.1016/j.jmapro.2024.04.048
摘要

Weld bead geometry visually represents the result of the welding process. However, ensuring a consistent weld bead is not always guaranteed due to the instability of the welding process. In this study, we present a deep learning-based monitoring system that predicts both the top and bottom bead widths simultaneously during the multi-mode fiber laser welding of aluminum alloy 1050P-H16. From the predicted top and bottom bead widths, rich information about the welding process can be obtained. Our deep learning model was constructed based on the VoVNet27-slim architecture, which was successfully trained using weld pool images obtained coaxially by a small optical camera. We were able to obtain very clean images of the aluminum weld pool, which provided plentiful information about the weld pool and the resulting top and bottom bead widths. We attempted to use one or two weld pool images as input to study how an additional weld pool image can enhance prediction accuracy. It was found that the top bead width was accurately predicted by both the one- and two-image models. However, the two-image model showed a clear improvement in the prediction of the bottom bead width because the bottom bead width fluctuates more widely and cannot be directly seen from the top-side weld pool image. The optimal separation distance between the two input images was found to be −0.1 mm, with which additional weld pool information about the past was supplied to the model and the denoising effect was achieved. Monitoring changes in both top and bottom bead widths provides rich information regarding the welding process, and we believe that the presented deep learning–based approach can serve as an effective monitoring tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾完成签到 ,获得积分10
2秒前
段绮彤完成签到,获得积分10
3秒前
liuweiwei完成签到 ,获得积分10
4秒前
欣慰雪巧完成签到,获得积分10
4秒前
4秒前
5秒前
原始动物研究者协会完成签到 ,获得积分10
6秒前
温柔的老头完成签到,获得积分10
12秒前
Augenstern完成签到,获得积分10
14秒前
jtj发布了新的文献求助10
14秒前
huhiji发布了新的文献求助10
16秒前
17秒前
激动的乐安完成签到 ,获得积分10
18秒前
10发布了新的文献求助10
19秒前
玄奇完成签到,获得积分10
23秒前
huhiji完成签到,获得积分10
26秒前
CipherSage应助10采纳,获得10
29秒前
追寻的怜容完成签到,获得积分10
30秒前
陈哈哈完成签到 ,获得积分10
32秒前
犇骉发布了新的文献求助10
39秒前
40秒前
铁板小土豆完成签到,获得积分10
43秒前
陶醉小土豆完成签到 ,获得积分10
45秒前
当里个当完成签到,获得积分10
45秒前
zzz完成签到 ,获得积分20
46秒前
虚拟的姒发布了新的文献求助10
47秒前
JamesPei应助Duckseid采纳,获得10
47秒前
zzz关注了科研通微信公众号
47秒前
副本发布了新的文献求助10
49秒前
chen完成签到,获得积分10
49秒前
犇骉完成签到,获得积分10
50秒前
失落的叶完成签到 ,获得积分10
54秒前
活泼的安柏完成签到 ,获得积分10
54秒前
小鲸鱼完成签到 ,获得积分10
54秒前
yyc2023完成签到,获得积分10
54秒前
孤独的匕发布了新的文献求助10
55秒前
壹壹壹发布了新的文献求助10
55秒前
闪闪问安完成签到 ,获得积分10
59秒前
李虎完成签到 ,获得积分10
1分钟前
张吉完成签到,获得积分20
1分钟前
高分求助中
Evolution 2001
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Black to Nature 1000
Decision Theory 1000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2992760
求助须知:如何正确求助?哪些是违规求助? 2652953
关于积分的说明 7174979
捐赠科研通 2288389
什么是DOI,文献DOI怎么找? 1212869
版权声明 592596
科研通“疑难数据库(出版商)”最低求助积分说明 592130