Large Model for Rotating Machine Fault Diagnosis Based on a Dense Connection Network With Depthwise Separable Convolution

可分离空间 卷积(计算机科学) 断层(地质) 一般化 计算机科学 块(置换群论) 特征提取 算法 特征(语言学) 人工智能 机器学习 数据挖掘 数学 人工神经网络 数学分析 几何学 地质学 地震学 语言学 哲学
作者
Yi Qin,Taisheng Zhang,Quan Qian,Yongfang Mao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:5
标识
DOI:10.1109/tim.2024.3396841
摘要

Most of the existing intelligent fault diagnosis models are suitable for only a type of rotating machine or equipment. To achieve the intelligent fault diagnosis for various rotating machines, it is significant for constructing a diagnostic model with a powerful generalization ability. Thereupon, this work addresses to explore a large fault diagnosis model for a variety of rotary machines. To process the big data from a number of rotating machines and mine their fault characteristics effectively, a dense connection network with depthwise separable convolution (DCNDSC) is proposed as the large model. In this network, a dense connection with depthwise separable convolution block (DCDSCB) is designed for representing the complex vibration data and suppressing the over-fitting, and then a series of DCDSCBs are stacked, so that DCNDSC can well extract various complicated characteristics caused by different faults and working conditions. A large rotating machine dataset including almost all public rotating machine data and our private data are built to train the large model. For enhancing the diagnostic ability of large model on the new monitoring data, a diminutive network fine-tuning strategy is proposed, while the main feature extraction capability of the pre-trained DCNDSC is preserved. Ten fault datasets are applied to verify the high accuracy and strong generalization ability of the developed large model. This model is not only effectively applied to the fault diagnosis of actual rotating machinery, but also firstly provides a pre-training large model for the field of mechanical fault diagnosis. Codes of our work are released at: https://qinyi-team.github.io/2024/04/Dense-connection-network-with-depthwise-separable-convolution/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢慢的地理人完成签到,获得积分10
刚刚
nenoaowu发布了新的文献求助10
1秒前
1秒前
1秒前
LeoJun完成签到,获得积分10
2秒前
西瓜完成签到,获得积分10
2秒前
youran完成签到,获得积分20
3秒前
sjdove完成签到,获得积分10
3秒前
华仔应助王瑜采纳,获得10
4秒前
lsjdsdb发布了新的文献求助10
4秒前
科研通AI2S应助Yu采纳,获得10
4秒前
青尘枫叶发布了新的文献求助10
4秒前
5秒前
5秒前
李健应助一只小鲨鱼采纳,获得10
6秒前
什么李完成签到,获得积分10
6秒前
独特斩发布了新的文献求助10
7秒前
lc339完成签到,获得积分10
7秒前
大模型应助害羞的若颜采纳,获得10
7秒前
兴奋大开发布了新的文献求助10
8秒前
小悦悦完成签到 ,获得积分10
9秒前
一个呼呼完成签到,获得积分10
9秒前
9秒前
鲤鱼鸽子应助sekidesu采纳,获得10
10秒前
陶醉完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
壮观的夏蓉完成签到,获得积分10
13秒前
能干冰岚完成签到,获得积分10
14秒前
幻梦发布了新的文献求助30
14秒前
15秒前
15秒前
兴奋大开完成签到,获得积分10
15秒前
Chillym发布了新的文献求助10
16秒前
宝宝来也完成签到,获得积分10
16秒前
16秒前
冷静诗蕊完成签到,获得积分10
16秒前
脑洞疼应助czb采纳,获得10
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397