亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Model for Rotating Machine Fault Diagnosis Based on a Dense Connection Network With Depthwise Separable Convolution

可分离空间 卷积(计算机科学) 断层(地质) 一般化 计算机科学 块(置换群论) 特征提取 算法 特征(语言学) 人工智能 机器学习 数据挖掘 数学 人工神经网络 数学分析 几何学 地质学 地震学 语言学 哲学
作者
Yi Qin,Taisheng Zhang,Quan Qian,Yongfang Mao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:6
标识
DOI:10.1109/tim.2024.3396841
摘要

Most of the existing intelligent fault diagnosis models are suitable for only a type of rotating machine or equipment. To achieve the intelligent fault diagnosis for various rotating machines, it is significant for constructing a diagnostic model with a powerful generalization ability. Thereupon, this work addresses to explore a large fault diagnosis model for a variety of rotary machines. To process the big data from a number of rotating machines and mine their fault characteristics effectively, a dense connection network with depthwise separable convolution (DCNDSC) is proposed as the large model. In this network, a dense connection with depthwise separable convolution block (DCDSCB) is designed for representing the complex vibration data and suppressing the over-fitting, and then a series of DCDSCBs are stacked, so that DCNDSC can well extract various complicated characteristics caused by different faults and working conditions. A large rotating machine dataset including almost all public rotating machine data and our private data are built to train the large model. For enhancing the diagnostic ability of large model on the new monitoring data, a diminutive network fine-tuning strategy is proposed, while the main feature extraction capability of the pre-trained DCNDSC is preserved. Ten fault datasets are applied to verify the high accuracy and strong generalization ability of the developed large model. This model is not only effectively applied to the fault diagnosis of actual rotating machinery, but also firstly provides a pre-training large model for the field of mechanical fault diagnosis. Codes of our work are released at: https://qinyi-team.github.io/2024/04/Dense-connection-network-with-depthwise-separable-convolution/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Orange应助nsc采纳,获得10
9秒前
科目三应助nsc采纳,获得10
9秒前
大个应助nsc采纳,获得10
9秒前
完美世界应助nsc采纳,获得30
9秒前
FashionBoy应助nsc采纳,获得10
9秒前
丘比特应助nsc采纳,获得10
9秒前
Orange应助nsc采纳,获得10
9秒前
慕青应助nsc采纳,获得10
9秒前
打打应助nsc采纳,获得10
9秒前
研友_VZG7GZ应助nsc采纳,获得10
10秒前
量子星尘发布了新的文献求助30
16秒前
17秒前
judy007发布了新的文献求助10
34秒前
科研通AI2S应助无辜笑容采纳,获得10
52秒前
cc应助科研通管家采纳,获得30
1分钟前
1分钟前
斯文败类应助nsc采纳,获得10
1分钟前
Ava应助nsc采纳,获得10
1分钟前
小二郎应助nsc采纳,获得10
1分钟前
天天快乐应助nsc采纳,获得10
1分钟前
李健应助nsc采纳,获得10
1分钟前
汉堡包应助nsc采纳,获得10
1分钟前
李健的小迷弟应助nsc采纳,获得10
1分钟前
在水一方应助nsc采纳,获得10
1分钟前
英姑应助nsc采纳,获得10
1分钟前
FashionBoy应助nsc采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
邹醉蓝完成签到,获得积分0
3分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264