Fracture Classification in Musculoskeletal Radiographs Using Custom CNN and Ensemble Learning

计算机科学 人工智能 射线照相术 集成学习 断裂(地质) 机器学习 模式识别(心理学) 上下文图像分类 口腔正畸科 医学 工程类 图像(数学) 放射科 岩土工程
作者
Sadia Shakiba Bhuiyan,Lucky Talukder Tarin,Md. Saiful Niaz,Moriomer Nesa Dolon,Amina Afroz,Raiyan Rahman
标识
DOI:10.1109/iceeict62016.2024.10534439
摘要

Musculoskeletal traumas, specifically fractures, pose significant hurdles for healthcare systems on a global scale. The conventional method of categorizing fractures heavily depends on the proficiency of radiologists, which introduces the possibility of mistakes and impedes precise diagnosis. By utilizing digital radiography, our objective is to mitigate the constraints associated with conventional approaches and boost the effectiveness and dependability of fracture categorization. Our investigation expands on this framework by presenting a customized Convolutional Neural Network specifically engineered for musculoskeletal radiographic images. To further augment classification precision and resilience, we integrate adapted pre-trained models with tailored layers as well as Ensemble Learning, amalgamating the capabilities of several models. The fusion methodology endeavors to alleviate hurdles pertaining to data scarcity, providing a robust framework for enhancing automated fracture detection systems in healthcare environments. Expanding upon recent efforts in transfer learning for fracture detection, our proposed approach seamlessly integrates into current research. By combining a customized Convolutional Neural Network (CNN) with Ensemble Learning, we introduce a resilient framework primed to enhance automated fracture identification systems. Our results strongly support the incorporation of adapted DenseNet121 with tailor-made layers, outperforming all alternative models by achieving a remarkable accuracy of 93%. This advancement represents a significant breakthrough in the enhancement of fracture and musculoskeletal injury diagnosis and treatment. This will also facilitate radiologists and physicians in expediently discerning fractures, enabling a more targeted approach to treatment and reducing the timeframe required to identify and pinpoint the specific locations of the fractures. Due to lightweight characteristics of the model, portable handheld instruments can be utilized for identification purposes with ease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助令狐梦柏采纳,获得10
刚刚
huagu722发布了新的文献求助10
2秒前
杨似孜发布了新的文献求助10
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
Hello应助1234采纳,获得10
7秒前
Sharyn227发布了新的文献求助10
7秒前
兰格格完成签到 ,获得积分10
7秒前
10秒前
小回发布了新的文献求助10
10秒前
11秒前
自信的坤发布了新的文献求助10
11秒前
11秒前
傲慢与偏见zz应助狗蛋采纳,获得10
12秒前
李耶耶完成签到,获得积分10
12秒前
Lucas应助2333采纳,获得10
13秒前
LYL发布了新的文献求助10
17秒前
欧欧发布了新的文献求助10
18秒前
19秒前
一枚研究僧应助Andy采纳,获得10
19秒前
MinamiKotori应助HRXYZ采纳,获得50
20秒前
23秒前
23秒前
24秒前
24秒前
十二月完成签到 ,获得积分10
24秒前
Ternura发布了新的文献求助10
26秒前
123发布了新的文献求助10
28秒前
28秒前
闫雪艳发布了新的文献求助10
29秒前
英俊的铭应助里里采纳,获得10
29秒前
领导范儿应助尔玉采纳,获得10
29秒前
29秒前
欧欧完成签到,获得积分20
29秒前
完美世界应助科研通管家采纳,获得10
34秒前
不配.应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
34秒前
不配.应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302