Fracture Classification in Musculoskeletal Radiographs Using Custom CNN and Ensemble Learning

计算机科学 人工智能 射线照相术 集成学习 断裂(地质) 机器学习 模式识别(心理学) 上下文图像分类 口腔正畸科 医学 工程类 图像(数学) 放射科 岩土工程
作者
Sadia Shakiba Bhuiyan,Lucky Talukder Tarin,Md. Saiful Niaz,Moriomer Nesa Dolon,Amina Afroz,Raiyan Rahman
标识
DOI:10.1109/iceeict62016.2024.10534439
摘要

Musculoskeletal traumas, specifically fractures, pose significant hurdles for healthcare systems on a global scale. The conventional method of categorizing fractures heavily depends on the proficiency of radiologists, which introduces the possibility of mistakes and impedes precise diagnosis. By utilizing digital radiography, our objective is to mitigate the constraints associated with conventional approaches and boost the effectiveness and dependability of fracture categorization. Our investigation expands on this framework by presenting a customized Convolutional Neural Network specifically engineered for musculoskeletal radiographic images. To further augment classification precision and resilience, we integrate adapted pre-trained models with tailored layers as well as Ensemble Learning, amalgamating the capabilities of several models. The fusion methodology endeavors to alleviate hurdles pertaining to data scarcity, providing a robust framework for enhancing automated fracture detection systems in healthcare environments. Expanding upon recent efforts in transfer learning for fracture detection, our proposed approach seamlessly integrates into current research. By combining a customized Convolutional Neural Network (CNN) with Ensemble Learning, we introduce a resilient framework primed to enhance automated fracture identification systems. Our results strongly support the incorporation of adapted DenseNet121 with tailor-made layers, outperforming all alternative models by achieving a remarkable accuracy of 93%. This advancement represents a significant breakthrough in the enhancement of fracture and musculoskeletal injury diagnosis and treatment. This will also facilitate radiologists and physicians in expediently discerning fractures, enabling a more targeted approach to treatment and reducing the timeframe required to identify and pinpoint the specific locations of the fractures. Due to lightweight characteristics of the model, portable handheld instruments can be utilized for identification purposes with ease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ssty采纳,获得30
刚刚
1秒前
在水一方应助白衣修身采纳,获得10
1秒前
1秒前
俺寻思能行完成签到,获得积分10
1秒前
1秒前
2秒前
第五日逢春完成签到,获得积分10
2秒前
wanci应助潇飞天下采纳,获得10
4秒前
6哈哈发布了新的文献求助10
4秒前
这橘不甜发布了新的文献求助10
5秒前
Hhl完成签到,获得积分10
5秒前
以fuyu关注了科研通微信公众号
5秒前
传奇3应助moon_采纳,获得10
5秒前
大个应助重庆森林采纳,获得10
6秒前
6秒前
xinxin666完成签到,获得积分10
7秒前
7秒前
爆米花应助always采纳,获得10
7秒前
7秒前
自然的夏兰完成签到,获得积分10
8秒前
温暖香菱完成签到,获得积分10
9秒前
害羞的裘完成签到 ,获得积分10
9秒前
Jonathan完成签到,获得积分10
9秒前
Kra发布了新的文献求助30
10秒前
隐形曼青应助Yuciyy采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Xieyusen发布了新的文献求助10
11秒前
ccm应助无奈战斗机采纳,获得10
12秒前
Dr_JennyZ发布了新的文献求助10
13秒前
派大星完成签到,获得积分10
13秒前
13秒前
孙乐777完成签到,获得积分10
14秒前
博ge完成签到 ,获得积分10
14秒前
哈哈哈完成签到,获得积分10
14秒前
15秒前
吃不吃米线完成签到,获得积分10
16秒前
小新完成签到,获得积分10
16秒前
qia发布了新的文献求助10
16秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978009
求助须知:如何正确求助?哪些是违规求助? 4231065
关于积分的说明 13178283
捐赠科研通 4021754
什么是DOI,文献DOI怎么找? 2200400
邀请新用户注册赠送积分活动 1212909
关于科研通互助平台的介绍 1129176