Fracture Classification in Musculoskeletal Radiographs Using Custom CNN and Ensemble Learning

计算机科学 人工智能 射线照相术 集成学习 断裂(地质) 机器学习 模式识别(心理学) 上下文图像分类 口腔正畸科 医学 工程类 图像(数学) 放射科 岩土工程
作者
Sadia Shakiba Bhuiyan,Lucky Talukder Tarin,Md. Saiful Niaz,Moriomer Nesa Dolon,Amina Afroz,Raiyan Rahman
标识
DOI:10.1109/iceeict62016.2024.10534439
摘要

Musculoskeletal traumas, specifically fractures, pose significant hurdles for healthcare systems on a global scale. The conventional method of categorizing fractures heavily depends on the proficiency of radiologists, which introduces the possibility of mistakes and impedes precise diagnosis. By utilizing digital radiography, our objective is to mitigate the constraints associated with conventional approaches and boost the effectiveness and dependability of fracture categorization. Our investigation expands on this framework by presenting a customized Convolutional Neural Network specifically engineered for musculoskeletal radiographic images. To further augment classification precision and resilience, we integrate adapted pre-trained models with tailored layers as well as Ensemble Learning, amalgamating the capabilities of several models. The fusion methodology endeavors to alleviate hurdles pertaining to data scarcity, providing a robust framework for enhancing automated fracture detection systems in healthcare environments. Expanding upon recent efforts in transfer learning for fracture detection, our proposed approach seamlessly integrates into current research. By combining a customized Convolutional Neural Network (CNN) with Ensemble Learning, we introduce a resilient framework primed to enhance automated fracture identification systems. Our results strongly support the incorporation of adapted DenseNet121 with tailor-made layers, outperforming all alternative models by achieving a remarkable accuracy of 93%. This advancement represents a significant breakthrough in the enhancement of fracture and musculoskeletal injury diagnosis and treatment. This will also facilitate radiologists and physicians in expediently discerning fractures, enabling a more targeted approach to treatment and reducing the timeframe required to identify and pinpoint the specific locations of the fractures. Due to lightweight characteristics of the model, portable handheld instruments can be utilized for identification purposes with ease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助壹壹采纳,获得10
刚刚
刚刚
1秒前
搜集达人应助鱼子西采纳,获得10
1秒前
张土豆完成签到,获得积分10
1秒前
宇宙拿铁完成签到 ,获得积分10
1秒前
NexusExplorer应助ASD采纳,获得10
3秒前
好运偏爱的那个男的完成签到,获得积分0
4秒前
在水一方应助Marshall采纳,获得10
4秒前
姚姚发布了新的文献求助10
4秒前
张土豆发布了新的文献求助10
4秒前
梓树发布了新的文献求助10
5秒前
5秒前
6秒前
李华完成签到,获得积分10
6秒前
汪强发布了新的文献求助10
6秒前
7秒前
斯文沛岚发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
ZG完成签到,获得积分10
8秒前
顾矜应助LI采纳,获得20
9秒前
10秒前
10秒前
ASD完成签到,获得积分10
10秒前
11秒前
999999完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
nuaa_shy应助科研通管家采纳,获得10
14秒前
维C应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
HH应助科研通管家采纳,获得10
15秒前
nuaa_shy应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783763
求助须知:如何正确求助?哪些是违规求助? 5678943
关于积分的说明 15462183
捐赠科研通 4913180
什么是DOI,文献DOI怎么找? 2644538
邀请新用户注册赠送积分活动 1592293
关于科研通互助平台的介绍 1546946