Fracture Classification in Musculoskeletal Radiographs Using Custom CNN and Ensemble Learning

计算机科学 人工智能 射线照相术 集成学习 断裂(地质) 机器学习 模式识别(心理学) 上下文图像分类 口腔正畸科 医学 工程类 图像(数学) 放射科 岩土工程
作者
Sadia Shakiba Bhuiyan,Lucky Talukder Tarin,Md. Saiful Niaz,Moriomer Nesa Dolon,Amina Afroz,Raiyan Rahman
标识
DOI:10.1109/iceeict62016.2024.10534439
摘要

Musculoskeletal traumas, specifically fractures, pose significant hurdles for healthcare systems on a global scale. The conventional method of categorizing fractures heavily depends on the proficiency of radiologists, which introduces the possibility of mistakes and impedes precise diagnosis. By utilizing digital radiography, our objective is to mitigate the constraints associated with conventional approaches and boost the effectiveness and dependability of fracture categorization. Our investigation expands on this framework by presenting a customized Convolutional Neural Network specifically engineered for musculoskeletal radiographic images. To further augment classification precision and resilience, we integrate adapted pre-trained models with tailored layers as well as Ensemble Learning, amalgamating the capabilities of several models. The fusion methodology endeavors to alleviate hurdles pertaining to data scarcity, providing a robust framework for enhancing automated fracture detection systems in healthcare environments. Expanding upon recent efforts in transfer learning for fracture detection, our proposed approach seamlessly integrates into current research. By combining a customized Convolutional Neural Network (CNN) with Ensemble Learning, we introduce a resilient framework primed to enhance automated fracture identification systems. Our results strongly support the incorporation of adapted DenseNet121 with tailor-made layers, outperforming all alternative models by achieving a remarkable accuracy of 93%. This advancement represents a significant breakthrough in the enhancement of fracture and musculoskeletal injury diagnosis and treatment. This will also facilitate radiologists and physicians in expediently discerning fractures, enabling a more targeted approach to treatment and reducing the timeframe required to identify and pinpoint the specific locations of the fractures. Due to lightweight characteristics of the model, portable handheld instruments can be utilized for identification purposes with ease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助lililili采纳,获得10
刚刚
Wen完成签到,获得积分10
刚刚
刚刚
bzc完成签到,获得积分10
1秒前
wan完成签到,获得积分10
2秒前
大个应助lyyy采纳,获得10
2秒前
bkagyin应助stonedream采纳,获得10
2秒前
zhouzheyu完成签到,获得积分10
2秒前
李浩然完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
腼腆的千雁完成签到,获得积分10
4秒前
4秒前
5秒前
生菜完成签到,获得积分20
5秒前
mouxq发布了新的文献求助10
6秒前
搜集达人应助lelebuaichi采纳,获得10
7秒前
典雅煎蛋完成签到,获得积分10
8秒前
迷路竹完成签到,获得积分10
9秒前
11秒前
悲凉的大有完成签到,获得积分10
11秒前
浮游应助小黑采纳,获得10
11秒前
12秒前
12秒前
倪妮发布了新的文献求助10
12秒前
明镜完成签到,获得积分10
13秒前
碧蓝的自行车完成签到,获得积分10
13秒前
13秒前
14秒前
哈哈哈发布了新的文献求助100
14秒前
14秒前
8888拉完成签到,获得积分10
15秒前
16秒前
在水一方应助旺仔秋秋糖采纳,获得10
16秒前
lililili发布了新的文献求助10
16秒前
17秒前
马达完成签到,获得积分10
17秒前
LUAN发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982