Fracture Classification in Musculoskeletal Radiographs Using Custom CNN and Ensemble Learning

计算机科学 人工智能 射线照相术 集成学习 断裂(地质) 机器学习 模式识别(心理学) 上下文图像分类 口腔正畸科 医学 工程类 图像(数学) 放射科 岩土工程
作者
Sadia Shakiba Bhuiyan,Lucky Talukder Tarin,Md. Saiful Niaz,Moriomer Nesa Dolon,Amina Afroz,Raiyan Rahman
标识
DOI:10.1109/iceeict62016.2024.10534439
摘要

Musculoskeletal traumas, specifically fractures, pose significant hurdles for healthcare systems on a global scale. The conventional method of categorizing fractures heavily depends on the proficiency of radiologists, which introduces the possibility of mistakes and impedes precise diagnosis. By utilizing digital radiography, our objective is to mitigate the constraints associated with conventional approaches and boost the effectiveness and dependability of fracture categorization. Our investigation expands on this framework by presenting a customized Convolutional Neural Network specifically engineered for musculoskeletal radiographic images. To further augment classification precision and resilience, we integrate adapted pre-trained models with tailored layers as well as Ensemble Learning, amalgamating the capabilities of several models. The fusion methodology endeavors to alleviate hurdles pertaining to data scarcity, providing a robust framework for enhancing automated fracture detection systems in healthcare environments. Expanding upon recent efforts in transfer learning for fracture detection, our proposed approach seamlessly integrates into current research. By combining a customized Convolutional Neural Network (CNN) with Ensemble Learning, we introduce a resilient framework primed to enhance automated fracture identification systems. Our results strongly support the incorporation of adapted DenseNet121 with tailor-made layers, outperforming all alternative models by achieving a remarkable accuracy of 93%. This advancement represents a significant breakthrough in the enhancement of fracture and musculoskeletal injury diagnosis and treatment. This will also facilitate radiologists and physicians in expediently discerning fractures, enabling a more targeted approach to treatment and reducing the timeframe required to identify and pinpoint the specific locations of the fractures. Due to lightweight characteristics of the model, portable handheld instruments can be utilized for identification purposes with ease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Nothing采纳,获得10
1秒前
1秒前
wndmy完成签到,获得积分10
1秒前
Owen应助MUWENYING采纳,获得10
1秒前
2秒前
2秒前
儒雅友瑶发布了新的文献求助10
2秒前
小新小新发布了新的文献求助10
2秒前
深情安青应助你好纠结伦采纳,获得10
2秒前
3秒前
烟花应助carpybala采纳,获得10
3秒前
一年5篇发布了新的文献求助10
3秒前
3秒前
3秒前
香蕉觅云应助风中的映寒采纳,获得30
3秒前
Qzy完成签到,获得积分10
4秒前
4秒前
狂野绿竹发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
51H完成签到,获得积分10
5秒前
6秒前
孙行行发布了新的文献求助10
6秒前
XiLin完成签到 ,获得积分10
6秒前
符聪完成签到 ,获得积分10
6秒前
hhing完成签到,获得积分10
6秒前
zsy发布了新的文献求助10
6秒前
7秒前
7秒前
CodeCraft应助虚心元绿采纳,获得10
7秒前
SciGPT应助11采纳,获得30
7秒前
前前发布了新的文献求助10
8秒前
Qzy发布了新的文献求助10
8秒前
李牧发布了新的文献求助10
8秒前
邱琳发布了新的文献求助10
8秒前
深情安青应助你好纠结伦采纳,获得10
9秒前
10秒前
Adelais发布了新的文献求助20
10秒前
77777发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709