计算机科学
图形核
图形
卷积神经网络
核(代数)
理论计算机科学
点积
人工智能
算法
模式识别(心理学)
核方法
数学
分布的核嵌入
离散数学
支持向量机
几何学
作者
Luca Cosmo,Giorgia Minello,Alessandro Bicciato,Michael M. Bronstein,Emanuele Rodolà,Luca Rossi,Andrea Torsello
标识
DOI:10.1109/tnnls.2024.3400850
摘要
The convolution operator at the core of many modern neural architectures can effectively be seen as performing a dot product between an input matrix and a filter. While this is readily applicable to data such as images, which can be represented as regular grids in the Euclidean space, extending the convolution operator to work on graphs proves more challenging, due to their irregular structure. In this article, we propose to use graph kernels, i.e., kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain. This allows us to define an entirely structural model that does not require computing the embedding of the input graph. Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability in terms of the structural masks that are learned during the training process, similar to what happens for convolutional masks in traditional convolutional neural networks (CNNs). We perform an extensive ablation study to investigate the model hyperparameters' impact and show that our model achieves competitive performance on standard graph classification and regression datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI