亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SelfMixed: Self-supervised mixed noise attenuation for distributed acoustic sensing data

衰减 噪音(视频) 计算机科学 声学 人工智能 物理 光学 图像(数学)
作者
Zitai Xu,Bangyu Wu,Yisi Luo,Liuqing Yang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): V415-V436 被引量:5
标识
DOI:10.1190/geo2023-0640.1
摘要

Distributed acoustic sensing (DAS) is an emerging data acquisition technique known for its high sensing density, cost effectiveness, and environmental friendliness, making it a technology with significant future application potential in many fields. However, DAS signals are often contaminated by various types of noise, such as high-frequency, high-amplitude erratic, and horizontal noise, making their processing challenging. Therefore, it is crucial to leverage the physical characteristics of these diverse types of noise in DAS data and effectively attenuate them. In this work, we develop SelfMixed, a novel self-supervised learning method for mixed noise suppression of DAS data. We fully exploit the physical characteristics of different types of noise in DAS data and introduce a physical characteristic-based training strategy. Specifically, we use the [Formula: see text] norm to characterize random noise, the [Formula: see text] norm for erratic noise, and horizontal smoothness and vertical nonsmoothness for horizontal noise. In addition, we use a blind-spot-based training strategy for DAS denoising, relying solely on observed noisy data. To more effectively attenuate horizontal noise, we also introduce a Fourier transform-based parameterization method. By combining self-supervised deep priors with the physical characteristics of mixed DAS noise, our method effectively attenuates complex mixed noise in field DAS data. Extensive experiments on synthetic and field data from various geographic scenarios validate the superiority of SelfMixed over seven state-of-the-art DAS denoising approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyw发布了新的文献求助10
1秒前
学生信的大叔完成签到,获得积分10
2秒前
典雅青槐完成签到 ,获得积分10
7秒前
13秒前
ning完成签到 ,获得积分10
23秒前
上官若男应助周凯采纳,获得10
26秒前
27秒前
斯文败类应助读书的时候采纳,获得10
38秒前
40秒前
komorebi发布了新的文献求助10
44秒前
Akim应助撒旦asd采纳,获得10
52秒前
59秒前
小宋爱科研完成签到 ,获得积分10
1分钟前
非蛋白呼吸商完成签到,获得积分10
1分钟前
mengliu完成签到,获得积分0
1分钟前
华仔应助ohhhhhoho采纳,获得10
1分钟前
Criminology34应助komorebi采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
ohhhhhoho发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
烟消云散完成签到,获得积分10
2分钟前
孙泉发布了新的文献求助10
2分钟前
黎明前发布了新的文献求助10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289