SelfMixed: Self-supervised mixed noise attenuation for distributed acoustic sensing data

衰减 噪音(视频) 计算机科学 声学 人工智能 物理 光学 图像(数学)
作者
Zitai Xu,Bangyu Wu,Yisi Luo,Liuqing Yang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): V415-V436 被引量:1
标识
DOI:10.1190/geo2023-0640.1
摘要

Distributed acoustic sensing (DAS) is an emerging data acquisition technique known for its high sensing density, cost effectiveness, and environmental friendliness, making it a technology with significant future application potential in many fields. However, DAS signals are often contaminated by various types of noise, such as high-frequency, high-amplitude erratic, and horizontal noise, making their processing challenging. Therefore, it is crucial to leverage the physical characteristics of these diverse types of noise in DAS data and effectively attenuate them. In this work, we develop SelfMixed, a novel self-supervised learning method for mixed noise suppression of DAS data. We fully exploit the physical characteristics of different types of noise in DAS data and introduce a physical characteristic-based training strategy. Specifically, we use the [Formula: see text] norm to characterize random noise, the [Formula: see text] norm for erratic noise, and horizontal smoothness and vertical nonsmoothness for horizontal noise. In addition, we use a blind-spot-based training strategy for DAS denoising, relying solely on observed noisy data. To more effectively attenuate horizontal noise, we also introduce a Fourier transform-based parameterization method. By combining self-supervised deep priors with the physical characteristics of mixed DAS noise, our method effectively attenuates complex mixed noise in field DAS data. Extensive experiments on synthetic and field data from various geographic scenarios validate the superiority of SelfMixed over seven state-of-the-art DAS denoising approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
华仔应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
Rui发布了新的文献求助10
3秒前
过时的机器猫完成签到,获得积分10
6秒前
z945完成签到,获得积分10
6秒前
7秒前
ZL完成签到,获得积分10
7秒前
蜗牛完成签到,获得积分10
9秒前
轻松新之发布了新的文献求助10
11秒前
田様应助巫马尔槐采纳,获得10
11秒前
十有五完成签到,获得积分10
11秒前
孝顺的尔竹完成签到,获得积分10
12秒前
ZIS完成签到,获得积分10
12秒前
科研通AI6应助李海艳采纳,获得10
14秒前
14秒前
Pheonix1998完成签到,获得积分10
15秒前
20秒前
科研通AI6应助ZIS采纳,获得10
20秒前
Alina完成签到 ,获得积分10
23秒前
24秒前
简简单单完成签到,获得积分10
25秒前
25秒前
26秒前
陈爽er完成签到 ,获得积分10
26秒前
咸鱼打滚发布了新的文献求助10
30秒前
领导范儿应助清脆的迎松采纳,获得10
31秒前
angelalxj发布了新的文献求助10
31秒前
彭于晏应助zhenyu0430采纳,获得10
32秒前
32秒前
阳佟曼云完成签到,获得积分10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890