SelfMixed: Self-supervised mixed noise attenuation for distributed acoustic sensing data

衰减 噪音(视频) 计算机科学 声学 人工智能 物理 光学 图像(数学)
作者
Zitai Xu,Bangyu Wu,Yisi Luo,Liuqing Yang,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): V415-V436 被引量:1
标识
DOI:10.1190/geo2023-0640.1
摘要

Distributed acoustic sensing (DAS) is an emerging data acquisition technique known for its high sensing density, cost effectiveness, and environmental friendliness, making it a technology with significant future application potential in many fields. However, DAS signals are often contaminated by various types of noise, such as high-frequency, high-amplitude erratic, and horizontal noise, making their processing challenging. Therefore, it is crucial to leverage the physical characteristics of these diverse types of noise in DAS data and effectively attenuate them. In this work, we develop SelfMixed, a novel self-supervised learning method for mixed noise suppression of DAS data. We fully exploit the physical characteristics of different types of noise in DAS data and introduce a physical characteristic-based training strategy. Specifically, we use the [Formula: see text] norm to characterize random noise, the [Formula: see text] norm for erratic noise, and horizontal smoothness and vertical nonsmoothness for horizontal noise. In addition, we use a blind-spot-based training strategy for DAS denoising, relying solely on observed noisy data. To more effectively attenuate horizontal noise, we also introduce a Fourier transform-based parameterization method. By combining self-supervised deep priors with the physical characteristics of mixed DAS noise, our method effectively attenuates complex mixed noise in field DAS data. Extensive experiments on synthetic and field data from various geographic scenarios validate the superiority of SelfMixed over seven state-of-the-art DAS denoising approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuliuism完成签到,获得积分10
刚刚
1秒前
drift完成签到,获得积分10
3秒前
5秒前
蔡宇滔完成签到,获得积分10
5秒前
田様应助热心市民小张采纳,获得10
5秒前
温冰雪应助kami采纳,获得10
6秒前
hayden发布了新的文献求助30
7秒前
lm发布了新的文献求助10
8秒前
9秒前
天天快乐应助利物鸟贝拉采纳,获得30
10秒前
鱼蛋丸子完成签到,获得积分10
10秒前
彭于晏应助兔兔要睡觉采纳,获得10
10秒前
小薇薇爱做梦完成签到,获得积分10
13秒前
13秒前
Aippan发布了新的文献求助10
14秒前
15秒前
17秒前
shidewu发布了新的文献求助10
17秒前
杳鸢应助yg采纳,获得10
18秒前
18秒前
热心市民小张完成签到,获得积分10
19秒前
19秒前
韶华若锦发布了新的文献求助10
20秒前
21秒前
还单身的语薇完成签到,获得积分10
23秒前
23秒前
25秒前
QQ完成签到 ,获得积分10
27秒前
28秒前
gttlyb完成签到,获得积分10
32秒前
研友_VZG7GZ应助长岛的雪采纳,获得10
32秒前
35秒前
兔兔要睡觉完成签到,获得积分10
36秒前
甜甜的紫菜完成签到 ,获得积分10
36秒前
37秒前
37秒前
受伤芝麻完成签到,获得积分10
37秒前
xiaoyue完成签到,获得积分10
37秒前
piggybunny完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003