Lithium-ion battery calendar aging mechanism analysis and impedance-based State-of-Health estimation method

健康状况 锂离子电池 电池(电) 集合(抽象数据类型) 计算机科学 可靠性工程 工程类 物理 功率(物理) 量子力学 程序设计语言
作者
Qi Zhang,Dafang Wang,Erik Schaltz,Daniel‐Ioan Stroe,Alejandro Gismero,Bowen Yang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:64: 107029-107029 被引量:25
标识
DOI:10.1016/j.est.2023.107029
摘要

Calendar aging is an important part of lithium-ion battery aging research. In response to the problem that the aging history of a battery cell, whose State-of-Health (SOH) needs to be estimated, may be not available, this paper proposes a SOH estimation model not relying on calendric aging conditions such as storage State-of-Charge (SOC) and storage temperature. The aging mechanisms of lithium-ion batteries in different calendric aging conditions are analyzed to investigate the influences of different aging conditions on battery internal behaviors. The neural network is used to build the SOH estimation model. To prove that the model accuracy is not affected by battery aging history, SOH indicators of cells aged at different conditions are set as training data set and testing data set respectively, and trained SOH estimation accuracy and tested SOH estimation accuracy are compared. The comparison shows that increments of mean absolute error (MAE) of SOH estimation introduced by the aging condition difference between trained data and tested data are less than 2 %. Using SOH indicators obtained at different SOC levels as inputs of the model also hardly reduce the model accuracy. The increase of MAE of SOH estimation because of the SOC difference between trained data and tested data are less than 1.5 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzj发布了新的文献求助10
1秒前
1秒前
1秒前
月见完成签到,获得积分10
1秒前
ivvi发布了新的文献求助10
1秒前
脑洞疼应助EASA采纳,获得10
1秒前
贝贝发布了新的文献求助10
1秒前
小透明发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
pp完成签到,获得积分10
3秒前
龙哥完成签到,获得积分20
4秒前
4秒前
贺兰完成签到,获得积分10
5秒前
Zhaojh发布了新的文献求助20
5秒前
夜神月发布了新的文献求助10
5秒前
清新的代芹完成签到,获得积分10
5秒前
6秒前
慕青应助Yeong采纳,获得10
6秒前
小蘑菇应助群山采纳,获得30
7秒前
yannis完成签到,获得积分10
7秒前
doc.level发布了新的文献求助20
8秒前
james发布了新的文献求助30
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
nature24发布了新的文献求助10
10秒前
桶装乐事完成签到,获得积分10
11秒前
酷波er应助EASA采纳,获得10
11秒前
okk完成签到 ,获得积分10
11秒前
善学以致用应助jian采纳,获得10
12秒前
liuyuxin完成签到,获得积分20
12秒前
12秒前
SciGPT应助lizi采纳,获得10
12秒前
long完成签到 ,获得积分10
12秒前
夜神月完成签到,获得积分10
13秒前
jingle发布了新的文献求助10
13秒前
赘婿应助MQ_sun采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785