Lithium-ion battery calendar aging mechanism analysis and impedance-based State-of-Health estimation method

健康状况 锂离子电池 电池(电) 计算机科学 可靠性工程 工程类 物理 功率(物理) 量子力学
作者
Qi Zhang,Dafang Wang,Erik Schaltz,Daniel‐Ioan Stroe,Alejandro Gismero,Bowen Yang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:64: 107029-107029 被引量:14
标识
DOI:10.1016/j.est.2023.107029
摘要

Calendar aging is an important part of lithium-ion battery aging research. In response to the problem that the aging history of a battery cell, whose State-of-Health (SOH) needs to be estimated, may be not available, this paper proposes a SOH estimation model not relying on calendric aging conditions such as storage State-of-Charge (SOC) and storage temperature. The aging mechanisms of lithium-ion batteries in different calendric aging conditions are analyzed to investigate the influences of different aging conditions on battery internal behaviors. The neural network is used to build the SOH estimation model. To prove that the model accuracy is not affected by battery aging history, SOH indicators of cells aged at different conditions are set as training data set and testing data set respectively, and trained SOH estimation accuracy and tested SOH estimation accuracy are compared. The comparison shows that increments of mean absolute error (MAE) of SOH estimation introduced by the aging condition difference between trained data and tested data are less than 2 %. Using SOH indicators obtained at different SOC levels as inputs of the model also hardly reduce the model accuracy. The increase of MAE of SOH estimation because of the SOC difference between trained data and tested data are less than 1.5 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助小黎加油冲冲冲采纳,获得10
1秒前
浮游应助11采纳,获得10
1秒前
清醒发布了新的文献求助10
2秒前
科研通AI5应助秦墨涵采纳,获得10
2秒前
ww发布了新的文献求助10
2秒前
咸鱼不摆烂完成签到,获得积分10
3秒前
purple1212发布了新的文献求助10
3秒前
117完成签到 ,获得积分10
3秒前
Jeff_Lin完成签到,获得积分10
4秒前
华仔应助完美的幻悲采纳,获得10
4秒前
zhuyuxin发布了新的文献求助10
5秒前
6秒前
故酒应助yufei采纳,获得10
6秒前
Wolfe发布了新的文献求助10
7秒前
英俊的铭应助善良的半仙采纳,获得10
7秒前
9秒前
欣喜的成败完成签到,获得积分20
9秒前
9秒前
13秒前
李爱国应助腼腆的老虎采纳,获得10
13秒前
13秒前
王志鹏发布了新的文献求助10
13秒前
orixero应助11采纳,获得10
15秒前
冷艳小刺猬完成签到 ,获得积分10
15秒前
16秒前
16秒前
朱灭龙发布了新的文献求助10
17秒前
279完成签到,获得积分10
17秒前
科研通AI5应助jiayouYi采纳,获得10
19秒前
veronica发布了新的文献求助10
19秒前
冷静妙海发布了新的文献求助10
19秒前
呵呵应助清脆惜寒采纳,获得10
20秒前
浮游应助沉默靳采纳,获得10
20秒前
科目三应助苗老九采纳,获得10
22秒前
23秒前
23秒前
24秒前
止于夏天发布了新的文献求助10
24秒前
jery发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4922383
求助须知:如何正确求助?哪些是违规求助? 4193140
关于积分的说明 13024098
捐赠科研通 3964851
什么是DOI,文献DOI怎么找? 2173095
邀请新用户注册赠送积分活动 1190691
关于科研通互助平台的介绍 1100079