亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multiple kernel ensemble approach for genomic prediction

超参数 超参数优化 支持向量机 最佳线性无偏预测 随机森林 核(代数) 计算机科学 机器学习 多核学习 人工智能 选择(遗传算法) Boosting(机器学习) 树(集合论) 基因组选择 数学 核方法 生物 组合数学 数学分析 生物化学 单核苷酸多态性 基因型 基因
作者
Zhihong Wang,Huanchen Wang,Tingxi Yu,Wuping Zhang,Jiwan Han,Fuzhong Li
标识
DOI:10.1117/12.2671691
摘要

Genomic selection (GS) to estimate genomic estimated breeding values (GEBVs) of individuals by using high-density molecular markers covering a genome-wide range combined with phenotypic records or pedigree information has revolutionized animal and plant breeding. Support vector machines (SVM) have been shown to be an important method for implementing genomic selection, showing excellent prediction performance on a variety of traits, but the choice of hyperparameters and kernel functions has an important impact on the prediction performance. In this study, we integrated four kernel functions of SVM to construct a multiple kernel ensemble (MKE) learning framework and combined gradient boosting decision tree (GBDT), genomic best linear unbiased prediction (GBLUP) and random forest (RF) to predict GEBVs for three economic traits of milk fat percentage (MFP), milk yield (MY), and somatic cell score (SCS) in German Holstein dairy cattle. We also constructed an Optuna hyperparameter optimization (HO) framework and compared the prediction performance and time to find the optimal parameters with two commonly used grid search and random search methods. The results show that the MKE framework outperforms the single kernel SVM as well as several other machine learning (ML) algorithms, with an average improvement of 10% in prediction accuracy for the three traits. Besides, the MKE framework with Optuna optimization has the best predictive performance on each trait. Therefore, we believed that MKE is an efficient and stable GS method for phenotypes prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tctc完成签到 ,获得积分10
5秒前
ceeray23应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
28秒前
瑞雪发布了新的文献求助10
32秒前
瑞雪完成签到,获得积分10
40秒前
42秒前
55秒前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
充电宝应助zhouxunnjau采纳,获得10
1分钟前
果果发布了新的文献求助10
1分钟前
所所应助Cmqq采纳,获得10
1分钟前
小马甲应助吱吱草莓派采纳,获得10
1分钟前
欣喜秋天完成签到,获得积分20
1分钟前
领导范儿应助吱吱草莓派采纳,获得10
1分钟前
1分钟前
大牛牛完成签到,获得积分10
1分钟前
过眼云烟完成签到,获得积分10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
clickable发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
佳佳发布了新的文献求助10
2分钟前
果果完成签到,获得积分20
2分钟前
共享精神应助孔踏歌采纳,获得10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
吃瓜群众完成签到,获得积分10
2分钟前
zhouxunnjau发布了新的文献求助10
2分钟前
小江发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
完美世界应助小江采纳,获得10
2分钟前
求学完成签到,获得积分10
2分钟前
在水一方应助求学采纳,获得10
2分钟前
loser完成签到 ,获得积分10
2分钟前
大模型应助Cmqq采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904