Comprehensive analysis of cathode air pressure of fuel cell powertrain system of aircraft: Performance, efficiency, and control

动力传动系统 汽车工程 航程(航空) 飞机燃油系统 气体压缩机 空气压缩机 质子交换膜燃料电池 燃料效率 工程类 制动比油耗 总压比 机械工程 燃料电池 扭矩 航空航天工程 燃烧 蒸汽锁 化学 燃烧室 物理 化学工程 热力学 有机化学
作者
Yuanyuan Li,Zunyan Hu,Huize Liu,Ling Xu,Jianqiu Li,Liangfei Xu,Minggao Ouyang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:283: 116903-116903 被引量:17
标识
DOI:10.1016/j.enconman.2023.116903
摘要

Fuel cells are ideal power sources for aircraft. However, fuel cells are highly sensitive to operating pressure, which complicates the operating characteristics of fuel cells at various altitudes. A globally optimal cathode pressure control method of aircraft fuel cell powertrain system is proposed to address the abovementioned problem. Simplified PEM (Polymer Electrolyte Membrane) fuel cell and electric motor driven two stage centrifugal compressor supercharger models are designed and validated, with the fuel cell model focusing on a wide range of variable cathode air pressures and the supercharger model focusing on a wide range of altitudes, to consider both calculation accuracy and amount. Compared with a physical fuel cell model and a CFD supercharger model, the simplified model boosts the calculation speed by approximately 107 times. The performance and efficiency of the fuel cell system at different altitudes, current densities, and charged air pressures are analyzed using the simplified model. With massive 3-dimensional data, an optimal pressure strategy is proposed to ensure that the system operates at the highest efficiency at any flight altitude and system output power. A near-optimal air pressure strategy is also proposed for better system stability and lower stress at an acceptable efficiency loss. The advantage of the two strategies over the commonly used fixed pressure strategy is demonstrated using a simple flight profile, where they reduce system hydrogen consumption during aircraft take-off and climbing by up to 3.4 % and 1.5 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李绛南发布了新的文献求助10
刚刚
英姑应助嘉禾瑶采纳,获得10
1秒前
lxcy0612发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
bc完成签到,获得积分10
3秒前
3秒前
巫马尔槐完成签到,获得积分10
4秒前
一纸空文发布了新的文献求助10
5秒前
爆米花应助nulll采纳,获得10
7秒前
7秒前
Xiaoyuan发布了新的文献求助10
8秒前
桐桐应助Marybaby采纳,获得10
9秒前
9秒前
缓慢冷安发布了新的文献求助10
10秒前
生言生语完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
迟大猫应助明芬采纳,获得10
11秒前
11秒前
科研通AI5应助cruise采纳,获得10
12秒前
12秒前
14秒前
科研通AI5应助ytx采纳,获得10
14秒前
viper3发布了新的文献求助30
15秒前
KH发布了新的文献求助10
15秒前
Michael发布了新的文献求助30
15秒前
嘉禾瑶发布了新的文献求助10
16秒前
Tanyang应助烈火采纳,获得60
17秒前
Akim应助站在牛顿头顶上采纳,获得10
17秒前
18秒前
chen完成签到,获得积分10
18秒前
jiangmin0702发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
jinx123456完成签到,获得积分10
20秒前
科研通AI5应助缓慢冷安采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490766
求助须知:如何正确求助?哪些是违规求助? 3077578
关于积分的说明 9149452
捐赠科研通 2769833
什么是DOI,文献DOI怎么找? 1519950
邀请新用户注册赠送积分活动 704398
科研通“疑难数据库(出版商)”最低求助积分说明 702166