Optimal Reinsurance with Multivariate Risks and Dependence Uncertainty

再保险 多元统计 计量经济学 多元分析 精算学 统计 数学 经济
作者
Tolulope Fadina,Junlei Hu,Peng Liu,Yi Xia
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4385711
摘要

In this paper we study the optimal reinsurance design from the perspective of an insurer with multiple lines of business, where the reinsurance is purchased by the insurer for each lines of business respectively. For the risk vector generated by the multiple lines of business, we suppose that the marginal distributions are fixed but the dependence structure between these risks is unknown. Due to the unknown dependence structure, the optimal strategy is investigated for the worst case scenario. We consider two types of risk measures: Value-at-Risk (VaR) and Range-Value-at-Risk (RVaR) including Expected Shortfall (ES) as a special case, and general premium principles satisfying certain conditions. To be more practical, the minimization of the total risk is conducted with both budget constraint and expected profit constraint. For VaR-based model with only two risks, it turns out that the limited stop-loss reinsurance treaty is optimal for each lines of business. For the model with more than two risks, we obtain two types of optimal reinsurance strategies if the marginals have convex or concave distributions on their tail parts by constraining the ceded loss functions to be convex or concave. Moreover, as a special case, the optimal quota-share reinsurance with dependence uncertainty has been studied. Finally, applying our findings with two risks, some numerical studies have been implemented to obtain the optimal reinsurance policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grace完成签到,获得积分10
刚刚
华仔应助YaHaa采纳,获得10
1秒前
滕可燕发布了新的文献求助10
1秒前
爆米花应助陈甜甜采纳,获得10
2秒前
摆烂小鱼鱼完成签到 ,获得积分10
2秒前
Lucas应助韩麒嘉采纳,获得10
2秒前
2秒前
2秒前
3秒前
Niuniu完成签到,获得积分10
3秒前
裴裴驳回了珏晴应助
3秒前
4秒前
4秒前
4秒前
4秒前
Aprilapple完成签到,获得积分10
4秒前
5秒前
song发布了新的文献求助10
5秒前
兴奋的发卡完成签到 ,获得积分10
6秒前
自觉翠安应助qiuxiali123采纳,获得10
6秒前
8秒前
hezhuyou完成签到,获得积分20
8秒前
飞乐扣完成签到 ,获得积分10
8秒前
buno应助屈昭阳采纳,获得10
8秒前
优美的觅珍完成签到,获得积分20
8秒前
冯佳祥发布了新的文献求助10
8秒前
aa发布了新的文献求助10
8秒前
852应助一只肥牛采纳,获得10
9秒前
lewis17发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
伯赏夜南发布了新的文献求助10
9秒前
orixero应助Niuniu采纳,获得10
9秒前
雪雪子完成签到,获得积分10
10秒前
10秒前
10秒前
胖狗完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836