清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large‐Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC–MS measurements

代谢组学 计算生物学 生物 比例(比率) 食品科学 生物信息学 物理 量子力学
作者
Johan K. Lassen,Tingting Wang,Kirstine Lykke Nielsen,Jørgen Bo Hasselstrøm,Mogens Johannsen,Palle Villesen
出处
期刊:Aging Cell [Wiley]
卷期号:22 (5): e13813-e13813 被引量:28
标识
DOI:10.1111/acel.13813
摘要

Abstract Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra‐high pressure liquid chromatography‐quadruple time of flight mass spectrometry (UHPLC‐ QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small‐scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years ( r 2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole‐3‐aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu‐pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large‐s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC‐MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
23秒前
wanci应助结实红酒采纳,获得10
26秒前
30秒前
迷茫的一代完成签到,获得积分10
33秒前
纯真的柔发布了新的文献求助10
36秒前
白华苍松发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
wanci应助高兴的海亦采纳,获得10
1分钟前
1分钟前
东城区吴彦祖完成签到,获得积分10
1分钟前
1分钟前
2分钟前
结实红酒发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
结实红酒完成签到,获得积分10
2分钟前
高兴的海亦完成签到,获得积分10
2分钟前
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
asdfzxcv应助高兴的海亦采纳,获得10
2分钟前
lili完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Aimee完成签到 ,获得积分10
3分钟前
白华苍松发布了新的文献求助10
3分钟前
4分钟前
WLX001完成签到 ,获得积分10
4分钟前
4分钟前
优美香露发布了新的文献求助10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706503
求助须知:如何正确求助?哪些是违规求助? 5174433
关于积分的说明 15246998
捐赠科研通 4859993
什么是DOI,文献DOI怎么找? 2608303
邀请新用户注册赠送积分活动 1559220
关于科研通互助平台的介绍 1517002