Large‐Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC–MS measurements

代谢组学 计算生物学 生物 样本量测定 生物信息学 统计 数学
作者
Johan K. Lassen,Tingting Wang,Kirstine Lykke Nielsen,Jørgen B. Hasselstrøm,Mogens Johannsen,Palle Villesen
出处
期刊:Aging Cell [Wiley]
卷期号:22 (5) 被引量:11
标识
DOI:10.1111/acel.13813
摘要

Abstract Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra‐high pressure liquid chromatography‐quadruple time of flight mass spectrometry (UHPLC‐ QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small‐scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years ( r 2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole‐3‐aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu‐pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large‐s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC‐MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
个性的饼干完成签到,获得积分10
2秒前
羊了个羊完成签到 ,获得积分10
3秒前
松松完成签到,获得积分10
4秒前
大模型应助Heidi采纳,获得10
4秒前
Ray完成签到,获得积分10
7秒前
Chridy发布了新的文献求助10
8秒前
10秒前
在水一方应助笑笑采纳,获得10
13秒前
whhhhhhhh发布了新的文献求助10
13秒前
14秒前
深情安青应助枝桠采纳,获得10
14秒前
小泥娃发布了新的文献求助10
14秒前
飘逸的含蕊完成签到,获得积分10
16秒前
搜集达人应助sb采纳,获得10
16秒前
soapffz完成签到,获得积分10
20秒前
穆亦擎完成签到 ,获得积分10
21秒前
22秒前
乐乐应助Garry采纳,获得10
23秒前
25秒前
Deerlu完成签到,获得积分10
27秒前
未晚完成签到 ,获得积分10
28秒前
新型关注了科研通微信公众号
30秒前
咖啡续命完成签到 ,获得积分10
31秒前
NHN发布了新的文献求助10
31秒前
小泥娃完成签到 ,获得积分10
32秒前
CA发布了新的文献求助10
32秒前
33秒前
36秒前
可爱的函函应助NHN采纳,获得10
36秒前
imsskkp发布了新的文献求助10
36秒前
田様应助Chridy采纳,获得10
36秒前
香蕉觅云应助kkjl采纳,获得10
37秒前
39秒前
Ava应助qiongqiong采纳,获得10
39秒前
courage完成签到,获得积分10
39秒前
Shirley应助忧伤的听白采纳,获得10
40秒前
40秒前
42秒前
科研通AI2S应助Heowikeo采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136252
求助须知:如何正确求助?哪些是违规求助? 2787284
关于积分的说明 7780707
捐赠科研通 2443292
什么是DOI,文献DOI怎么找? 1299034
科研通“疑难数据库(出版商)”最低求助积分说明 625318
版权声明 600888