亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large‐Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC–MS measurements

代谢组学 计算生物学 生物 比例(比率) 食品科学 生物信息学 物理 量子力学
作者
Johan K. Lassen,Tingting Wang,Kirstine Lykke Nielsen,Jørgen Bo Hasselstrøm,Mogens Johannsen,Palle Villesen
出处
期刊:Aging Cell [Wiley]
卷期号:22 (5): e13813-e13813 被引量:28
标识
DOI:10.1111/acel.13813
摘要

Abstract Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra‐high pressure liquid chromatography‐quadruple time of flight mass spectrometry (UHPLC‐ QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small‐scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years ( r 2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole‐3‐aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu‐pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large‐s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC‐MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助catherine采纳,获得10
7秒前
dandan完成签到,获得积分10
9秒前
22秒前
废久发布了新的文献求助30
27秒前
BowieHuang应助科研通管家采纳,获得10
34秒前
shhoing应助科研通管家采纳,获得10
35秒前
35秒前
shhoing应助科研通管家采纳,获得10
35秒前
搜集达人应助科研通管家采纳,获得30
35秒前
热心易绿完成签到 ,获得积分10
51秒前
1分钟前
一行完成签到,获得积分20
1分钟前
一行发布了新的文献求助10
1分钟前
nojego完成签到,获得积分10
1分钟前
1分钟前
YJ888发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
爆米花应助YJ888采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
U87完成签到,获得积分10
3分钟前
4分钟前
林新宇发布了新的文献求助10
4分钟前
桐桐应助林新宇采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
林新宇发布了新的文献求助10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543197
求助须知:如何正确求助?哪些是违规求助? 4629393
关于积分的说明 14611153
捐赠科研通 4570669
什么是DOI,文献DOI怎么找? 2505859
邀请新用户注册赠送积分活动 1483108
关于科研通互助平台的介绍 1454424