Deep Reinforcement Learning Based Algorithm for Symbiotic Radio IoT Throughput Optimization in 6G Network

计算机科学 吞吐量 电信线路 基站 计算机网络 聚类分析 传输(电信) 最优化问题 强化学习 选择算法 无线网络 无线 继电器 算法 实时计算 选择(遗传算法) 功率(物理) 人工智能 电信 物理 量子力学
作者
Gergs M. Salama,Samar Shaker Metwly,E. G. Shehata,Ahmed M. Abd El‐Haleem
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 42331-42342 被引量:2
标识
DOI:10.1109/access.2023.3271423
摘要

Internet of Things (IoT) -based 6G is expected to revolutionize our world. Various candidate technologies have been proposed to meet IoT system requirements based on 6G, symbiotic radio (SR) is one of these technologies. This paper aims to use symbiotic radio technology to support the passive Internet of things and enhance uplink transmission performance. The IoT tag information is sent to the cloud for analysis through a macro base station (MBS) or a wireless access point (WAP), where the smartphones are used as a relay to transmit this information to the MBS or WAP. In this paper, an optimization problem was formulated into two phases to maximize the total throughput of the system. The first phase is, the problem of achieving the optimum mode selection of the LTE or Wi-Fi Network, aiming to maximize the system throughput. A matching game algorithm is used to solve this problem. Second phase, the problem of achieving optimum clustering of tags, where the tags are divided into virtual clusters, and finding which smartphones’ LTE/Wi-Fi downlink signals all cluster members can ride to maximize the system throughput. A double deep Q-network (DDQN) model was proposed to solve this problem. Simulation results show that our proposed algorithms increase the total system data rate by an average of 90% above the system using the LTE network first without DDQL algorithm. Furthermore, it enhances the capacity of the system on average by 100% above LTE network first system without the DDQL algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
科研通AI5应助无悔呀采纳,获得10
3秒前
3秒前
littlewhite关注了科研通微信公众号
4秒前
4秒前
零点起步完成签到,获得积分10
4秒前
慕青应助大力的含卉采纳,获得10
4秒前
善良过客发布了新的文献求助10
5秒前
5秒前
5秒前
dildil发布了新的文献求助10
5秒前
5秒前
hu970发布了新的文献求助10
6秒前
6秒前
王思鲁发布了新的文献求助30
6秒前
七个小矮人完成签到,获得积分10
7秒前
Aria完成签到,获得积分10
7秒前
感性的安露应助结实雪卉采纳,获得20
8秒前
零点起步发布了新的文献求助10
9秒前
故意的傲玉应助Ll采纳,获得10
9秒前
斯文败类应助xiuxiu_27采纳,获得10
9秒前
胖子完成签到,获得积分10
9秒前
王巧巧完成签到,获得积分10
9秒前
tangsuyun发布了新的文献求助10
10秒前
祝顺遂发布了新的文献求助10
10秒前
Seven发布了新的文献求助10
10秒前
土拨鼠完成签到 ,获得积分10
11秒前
邢夏之发布了新的文献求助10
11秒前
漂亮芹菜完成签到,获得积分10
11秒前
ZXH完成签到,获得积分10
11秒前
Evelyn完成签到 ,获得积分10
11秒前
习习应助sb采纳,获得10
12秒前
12秒前
12秒前
斯文败类应助liu采纳,获得10
13秒前
13秒前
gy发布了新的文献求助10
13秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759