Deep Reinforcement Learning Based Algorithm for Symbiotic Radio IoT Throughput Optimization in 6G Network

计算机科学 吞吐量 电信线路 基站 计算机网络 聚类分析 传输(电信) 最优化问题 强化学习 选择算法 无线网络 无线 继电器 算法 实时计算 选择(遗传算法) 功率(物理) 人工智能 电信 物理 量子力学
作者
Gergs M. Salama,Samar Shaker Metwly,E. G. Shehata,Ahmed M. Abd El‐Haleem
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 42331-42342 被引量:2
标识
DOI:10.1109/access.2023.3271423
摘要

Internet of Things (IoT) -based 6G is expected to revolutionize our world. Various candidate technologies have been proposed to meet IoT system requirements based on 6G, symbiotic radio (SR) is one of these technologies. This paper aims to use symbiotic radio technology to support the passive Internet of things and enhance uplink transmission performance. The IoT tag information is sent to the cloud for analysis through a macro base station (MBS) or a wireless access point (WAP), where the smartphones are used as a relay to transmit this information to the MBS or WAP. In this paper, an optimization problem was formulated into two phases to maximize the total throughput of the system. The first phase is, the problem of achieving the optimum mode selection of the LTE or Wi-Fi Network, aiming to maximize the system throughput. A matching game algorithm is used to solve this problem. Second phase, the problem of achieving optimum clustering of tags, where the tags are divided into virtual clusters, and finding which smartphones’ LTE/Wi-Fi downlink signals all cluster members can ride to maximize the system throughput. A double deep Q-network (DDQN) model was proposed to solve this problem. Simulation results show that our proposed algorithms increase the total system data rate by an average of 90% above the system using the LTE network first without DDQL algorithm. Furthermore, it enhances the capacity of the system on average by 100% above LTE network first system without the DDQL algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷紫夏完成签到,获得积分10
刚刚
yingtiao完成签到,获得积分10
刚刚
xiongqi完成签到 ,获得积分10
1秒前
66668888发布了新的文献求助10
1秒前
单纯芹菜完成签到,获得积分10
1秒前
浮游应助JOY采纳,获得10
1秒前
2秒前
2秒前
3秒前
鳗鱼静珊完成签到 ,获得积分20
3秒前
怪了个奇发布了新的文献求助30
3秒前
3秒前
jzmupyj发布了新的文献求助10
3秒前
haha哈哈哈发布了新的文献求助10
3秒前
简单澜发布了新的文献求助10
3秒前
鹿璟璟完成签到,获得积分10
3秒前
个高视野远完成签到,获得积分10
4秒前
聪明的小海豚完成签到,获得积分10
4秒前
FY完成签到,获得积分10
4秒前
酥脆多汁的大油条完成签到,获得积分10
5秒前
6秒前
不安海蓝完成签到,获得积分10
6秒前
6秒前
rkay完成签到,获得积分10
6秒前
羊布吃稻发布了新的文献求助30
7秒前
慕月完成签到 ,获得积分10
7秒前
8秒前
8秒前
卷卷发布了新的文献求助10
8秒前
8秒前
劉浏琉完成签到,获得积分10
8秒前
简柠完成签到,获得积分10
8秒前
lessismore发布了新的文献求助10
10秒前
10秒前
10秒前
Kong完成签到,获得积分10
10秒前
英俊安蕾完成签到,获得积分10
11秒前
一一完成签到 ,获得积分10
11秒前
范海辛完成签到,获得积分10
12秒前
王月缶发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206