A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting

计算机科学 邻接矩阵 图形 数据挖掘 邻接表 卷积(计算机科学) 矩阵分解 交通生成模型 人工智能 算法 实时计算 理论计算机科学 人工神经网络 量子力学 物理 特征向量
作者
Wenchao Weng,Jin Fan,Huifeng Wu,Yujie Hu,Hao Tian,Zhu Fu,Jia Wu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:142: 109670-109670 被引量:83
标识
DOI:10.1016/j.patcog.2023.109670
摘要

Our daily lives are greatly impacted by traffic conditions, making it essential to have accurate predictions of traffic flow within a road network. Traffic signals used for forecasting are usually generated by sensors along roads, which can be represented as nodes on a graph. These sensors typically produce normal signals representing normal traffic flows and abnormal signals indicating unknown traffic disruptions. Graph convolution networks are widely used for traffic prediction due to their ability to capture correlations between network nodes. However, existing approaches use a predefined or adaptive adjacency matrix that does not accurately reflect real-world relationships between signals. To address this issue, we propose a decomposition dynamic graph convolutional recurrent network (DDGCRN) for traffic forecasting. DDGCRN combines a dynamic graph convolution recurrent network with an RNN-based model that generates dynamic graphs based on time-varying traffic signals, allowing for the extraction of both spatial and temporal features. Additionally, DDGCRN separates abnormal signals from normal traffic signals and models them using a data-driven approach to further improve predictions. Results from our analysis of six real-world datasets demonstrate the superiority of DDGCRN compared to the current state-of-the-art. The source codes are available at: https://github.com/wengwenchao123/DDGCRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wu8577应助笨比小刘采纳,获得10
2秒前
稳重依风发布了新的文献求助10
2秒前
科研通AI2S应助Frederick采纳,获得30
3秒前
传奇3应助冬天雪山茶采纳,获得10
4秒前
4秒前
wu8577应助潘趣酒采纳,获得10
4秒前
4秒前
6秒前
blablawindy发布了新的文献求助10
7秒前
wu8577应助熬夜拜拜采纳,获得10
7秒前
7秒前
pipi发布了新的文献求助10
7秒前
窝窝完成签到 ,获得积分10
9秒前
score17发布了新的文献求助10
9秒前
www发布了新的文献求助10
9秒前
高兴白莲发布了新的文献求助10
10秒前
10秒前
liujian完成签到,获得积分10
10秒前
隐形曼青应助淡淡夕阳采纳,获得10
11秒前
11秒前
jkdzp发布了新的文献求助10
12秒前
Mountain_Y发布了新的文献求助30
12秒前
13秒前
13秒前
linkman发布了新的文献求助10
16秒前
丘比特应助嘴巴张大一点采纳,获得10
17秒前
橙子发布了新的文献求助10
18秒前
nan发布了新的文献求助10
19秒前
19秒前
19秒前
IvanMcRae应助牛牛眉目采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
阿景完成签到,获得积分10
22秒前
Hygge发布了新的文献求助10
22秒前
Mountain_Y完成签到,获得积分10
23秒前
万能图书馆应助栀雨味采纳,获得10
23秒前
山有扶苏发布了新的文献求助30
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105