A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting

计算机科学 邻接矩阵 图形 数据挖掘 邻接表 卷积(计算机科学) 矩阵分解 交通生成模型 人工智能 算法 实时计算 理论计算机科学 人工神经网络 量子力学 物理 特征向量
作者
Wenchao Weng,Jin Fan,Huifeng Wu,Yujie Hu,Hao Tian,Zhu Fu,Jia Wu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:142: 109670-109670 被引量:41
标识
DOI:10.1016/j.patcog.2023.109670
摘要

Our daily lives are greatly impacted by traffic conditions, making it essential to have accurate predictions of traffic flow within a road network. Traffic signals used for forecasting are usually generated by sensors along roads, which can be represented as nodes on a graph. These sensors typically produce normal signals representing normal traffic flows and abnormal signals indicating unknown traffic disruptions. Graph convolution networks are widely used for traffic prediction due to their ability to capture correlations between network nodes. However, existing approaches use a predefined or adaptive adjacency matrix that does not accurately reflect real-world relationships between signals. To address this issue, we propose a decomposition dynamic graph convolutional recurrent network (DDGCRN) for traffic forecasting. DDGCRN combines a dynamic graph convolution recurrent network with an RNN-based model that generates dynamic graphs based on time-varying traffic signals, allowing for the extraction of both spatial and temporal features. Additionally, DDGCRN separates abnormal signals from normal traffic signals and models them using a data-driven approach to further improve predictions. Results from our analysis of six real-world datasets demonstrate the superiority of DDGCRN compared to the current state-of-the-art. The source codes are available at: https://github.com/wengwenchao123/DDGCRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
minima1998完成签到,获得积分20
3秒前
3秒前
哈哈王子完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
执笔发布了新的文献求助10
7秒前
喵咪完成签到,获得积分20
11秒前
Jasper应助欣欣儿采纳,获得10
12秒前
科研通AI2S应助曾梦采纳,获得10
13秒前
xiaoxuening发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
执着月饼发布了新的文献求助20
15秒前
18秒前
王王完成签到,获得积分20
20秒前
Yuri完成签到,获得积分10
20秒前
顾矜应助欢喜雯采纳,获得10
22秒前
Yuri发布了新的文献求助10
23秒前
小燕子完成签到,获得积分10
24秒前
26秒前
充电宝应助自信冬瓜采纳,获得10
27秒前
27秒前
27秒前
我是老大应助Zxc采纳,获得10
28秒前
子勿语完成签到 ,获得积分10
28秒前
丘比特应助Tim采纳,获得10
28秒前
29秒前
闫伊森完成签到,获得积分10
30秒前
大模型应助星你采纳,获得10
30秒前
隐形哈密瓜应助Accepted采纳,获得10
31秒前
科研通AI2S应助MrLiu采纳,获得10
31秒前
深深浅浅发布了新的文献求助10
31秒前
HH完成签到,获得积分10
34秒前
欢喜雯发布了新的文献求助10
35秒前
Xiao10105830完成签到,获得积分10
37秒前
唐政清发布了新的文献求助10
38秒前
39秒前
zheng完成签到 ,获得积分10
40秒前
喵咪发布了新的文献求助10
41秒前
45秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210620
求助须知:如何正确求助?哪些是违规求助? 2859826
关于积分的说明 8121237
捐赠科研通 2525430
什么是DOI,文献DOI怎么找? 1359228
科研通“疑难数据库(出版商)”最低求助积分说明 642976
邀请新用户注册赠送积分活动 614759