重编程
生物
拟南芥
转录组
基因敲除
细胞生物学
转录调控
基因
拟南芥
抄写(语言学)
转录因子
基因表达
基因表达调控
遗传学
分子生物学
突变体
哲学
语言学
作者
Jie Li,Yiming Cao,Jiaxin Zhang,Cuijing Zhu,Guiliang Tang,Jun Yan
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2023-05-03
卷期号:35 (8): 2952-2971
被引量:9
标识
DOI:10.1093/plcell/koad121
摘要
Abstract Heat stress (HS) adversely affects plant growth and productivity. The Class A1 HS transcription factors (HSFA1s) act as master regulators in the plant response to HS. However, how HSFA1-mediated transcriptional reprogramming is modulated during HS remains to be elucidated. Here, we report that a module formed by the microRNAs miR165 and miR166 and their target transcript, PHABULOSA (PHB), regulates HSFA1 at the transcriptional and translational levels to control plant HS responses. HS-triggered induction of MIR165/166 in Arabidopsis thaliana led to decreased expression of target genes including PHB. MIR165/166 overexpression lines and mutations in miR165/166 target genes enhanced HS tolerance, whereas miR165/166 knockdown lines and plants expressing a miR165/166-resistant form of PHB were sensitive to HS. PHB directly repressed the transcription of HSFA1s and globally modulated the expression of HS-responsive genes. PHB and HSFA1s share a common target gene, HSFA2, which is essential for activation of plant responses to HS. PHB physically interacted with HSFA1s and exerted an antagonistic effect on HSFA1 transcriptional activity. PHB and HSFA1s co-regulated transcriptome reprogramming upon HS. Together, these findings indicate that heat-triggered regulation of the miR165/166–PHB module controls HSFA1-mediated transcriptional reprogramming and plays a critical role during HS in Arabidopsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI