缺函数
催化作用
析氧
分解水
多金属氧酸盐
镍
硫化
色散(光学)
化学
电解质
化学工程
无机化学
材料科学
物理化学
电化学
电极
有机化学
物理
工程类
纯数学
光学
光催化
数学
作者
Fengyue Sun,Changle Yue,Jinjin Wang,Yang Liu,Wenjing Bao,Na Liu,Yongxiao Tuo,Yukun Lu
标识
DOI:10.1016/j.jcis.2023.04.144
摘要
Manufacturing low-cost, high-performance and earth-rich catalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) is critical to achieving sustainable green hydrogen production. Herein, we utilize lacunary Keggin-structure [PW9O34]9- (PW9) as a molecular pre-assembly platform to anchor Ni within a single PW9 molecule by vacancy-directed and nucleophile-induced effects for the uniform dispersion of Ni at the atomic level. The chemical coordination of Ni with PW9 can avoid the aggregation of Ni and favor the exposure of active sites. The Ni3S2 confined by WO3 prepared from controlled sulfidation of Ni6PW9/Nickel Foam (Ni6PW9/NF) exhibited excellent catalytic activity in both 0.5 M H2SO4 and 1 M KOH solutions, which required only 86 mV and 107 mV overpotentials for HER at a current density of 10 mA∙cm-2 and 370 mV for OER at 200 mA∙cm-2. This is attributed to the good dispersion of Ni at the atomic level induced by trivacant PW9 and the enhanced intrinsic activity by synergistic effect of Ni and W. Therefore, the construction of active phase from the atomic level is insightful to the rational design of dispersed and efficient electrolytic catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI