亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Cascaded Deep Learning Model for the Detection and Quantification of Defects in Pipelines via Magnetic Flux Leakage Signals

漏磁 管道运输 卷积神经网络 无损检测 残余物 人工智能 机器人 泄漏(经济) 试验数据 人工神经网络 目标检测 磁通量 计算机科学 工程类 计算机视觉 模式识别(心理学) 算法 磁场 磁铁 宏观经济学 放射科 物理 环境工程 机械工程 经济 医学 程序设计语言 量子力学
作者
Veysel Yuksel,Yusuf Engin Tetik,Mahmut Omer Basturk,Onur Recepoglu,Kursad Gokce,Mehmet Ali Çimen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-9 被引量:28
标识
DOI:10.1109/tim.2023.3272377
摘要

In this paper, we present a machine learning based quantitative method for the interpretation of signals gathered from non-destructive-testing (NDT) of steel pipelines via a semi-autonomous in-line-inspection (ILI) robot. The robot has a magnetic-flux-leakage (MFL) sensor that produces three axis data for each point of pipeline with specific intervals. Both the robot and the MFL sensor have been developed in-house. The signals collected via MFL sensor are converted into images to be used as input for the proposed defect detection model. We propose a combination of a defect detection model based on SwinYv5 object detection algorithm and a quantification model based on Cross-Residual Convolutional Neural Network (CR-CNN). The detected defect locations are used to extract the Region of Interest (ROI) images of defects that are used as input for the quantification model. In data collection phase, numerous tests have been conducted via a special test mechanism and a custom data augmentation technique has been deployed in order to increase the amount and variety of training data. According to test results, the proposed method is capable of detecting defects with a precision of 98.9% and quantifying them with maximum errors of 1.30, 1.65 and 0.47 mm for length, width and depth respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助李大伟采纳,获得10
2秒前
10秒前
李大伟完成签到,获得积分10
18秒前
18秒前
平常以云完成签到 ,获得积分10
20秒前
悠树里完成签到,获得积分10
24秒前
无奈寒梦发布了新的文献求助10
29秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
51秒前
hEbuy完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
汉堡包应助Developing_human采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
暴躁的奇异果完成签到,获得积分10
4分钟前
4分钟前
领导范儿应助Ming采纳,获得10
4分钟前
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491