亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated calibration system for length measurement of lateral cephalometry based on deep learning

鼻离子 校准 头影测量 头影测量分析 人工智能 计算机科学 数学 口腔正畸科 统计 医学
作者
Fulin Jiang,Yutong Guo,Yimei Zhou,Cai Yang,Ke Xing,Jiawei Zhou,Yucheng Lin,Fangyuan Cheng,Juan Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225016-225016 被引量:6
标识
DOI:10.1088/1361-6560/ac9880
摘要

Abstract Objective . Cephalometric analysis has been significantly facilitated by artificial intelligence (AI) in recent years. For digital cephalograms, linear measurements are conducted based on the length calibration process, which has not been automatized in current AI-based systems. Therefore, this study aimed to develop an automated calibration system for lateral cephalometry to conduct linear measurements more efficiently. Approach . This system was based on deep learning algorithms and medical priors of a stable structure, the anterior cranial base (Sella–Nasion). First, a two-stage cascade convolutional neural network was constructed based on 2860 cephalograms to locate sella, nasion, and 2 ruler points in regions of interest. Further, Sella–Nasion distance was applied to estimate the distance between ruler points, and then pixels size of cephalograms was attained for linear measurements. The accuracy of automated landmark localization, ruler length prediction, and linear measurement based on automated calibration was evaluated with statistical analysis. Main results . First, for AI-located points, 99.6% of S and 86% of N points deviated less than 2 mm from the ground truth, and 99% of ruler points deviated less than 0.3 mm from the ground truth. Also, this system correctly predicted the ruler length of 98.95% of samples. Based on automated calibration, 11 linear cephalometric measurements of the test set showed no difference from manual calibration ( p > 0.05). Significance . This system was the first reported in the literature to conduct automated calibration with high accuracy and showed high potential for clinical application in cephalometric analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谷围桥苯环萘完成签到,获得积分10
12秒前
maodeshu给宇文一的求助进行了留言
34秒前
科研通AI2S应助忘皆空采纳,获得10
34秒前
35秒前
不正发布了新的文献求助10
40秒前
Simpson完成签到 ,获得积分10
55秒前
59秒前
大个应助wnx001111采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
shawn发布了新的文献求助10
1分钟前
1分钟前
wnx001111发布了新的文献求助10
1分钟前
wnx001111完成签到,获得积分10
1分钟前
包容丹云完成签到,获得积分10
1分钟前
笨笨的元绿完成签到,获得积分20
1分钟前
2分钟前
2分钟前
鸫鸫完成签到,获得积分10
2分钟前
2分钟前
HHH完成签到,获得积分10
2分钟前
Luminous应助tctgvfxdbhb采纳,获得30
2分钟前
HHH发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助20
2分钟前
立邦芝士完成签到,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
2分钟前
只A不B应助puzhongjiMiQ采纳,获得10
2分钟前
ding应助puzhongjiMiQ采纳,获得10
2分钟前
小蘑菇应助puzhongjiMiQ采纳,获得10
2分钟前
Lucas应助puzhongjiMiQ采纳,获得10
2分钟前
大模型应助puzhongjiMiQ采纳,获得10
2分钟前
完美世界应助puzhongjiMiQ采纳,获得10
2分钟前
田様应助puzhongjiMiQ采纳,获得10
2分钟前
共享精神应助puzhongjiMiQ采纳,获得10
2分钟前
李健应助puzhongjiMiQ采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
英俊的铭应助HHH采纳,获得10
3分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330375
求助须知:如何正确求助?哪些是违规求助? 2960038
关于积分的说明 8598036
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444478
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727