Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment

航路点 强化学习 计算机科学 弹道 人工智能 深度学习 人工神经网络 运动规划 移动机器人 任务(项目管理) 机器人 实时计算 机器学习 模拟 工程类 物理 系统工程 天文
作者
Runqi Chai,Hanlin Niu,Joaquín Carrasco,Farshad Arvin,Hujun Yin,Barry Lennox
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5778-5792 被引量:215
标识
DOI:10.1109/tnnls.2022.3209154
摘要

This article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot. This approach is built upon a recently proposed idea of using deep neural networks (DNNs) to approximate the optimal motion trajectories, which has been validated that a fast approximation performance can be achieved. To further enhance the network prediction performance, a recurrent network model capable of fully exploiting the inherent relationship between preoptimized system state and control pairs is advocated. In the lower level, a deep reinforcement learning (DRL)-based collision-free control algorithm is established to achieve the waypoint tracking task in an uncertain environment (e.g., the existence of unexpected obstacles). Since this approach allows the control policy to directly learn from human demonstration data, the time required by the training process can be significantly reduced. Moreover, a noisy prioritized experience replay (PER) algorithm is proposed to improve the exploring rate of control policy. The effectiveness of applying the proposed deep learning-based control is validated by executing a number of simulation and experimental case studies. The simulation result shows that the proposed DRL method outperforms the vanilla PER algorithm in terms of training speed. Experimental videos are also uploaded, and the corresponding results confirm that the proposed strategy is able to fulfill the autonomous exploration mission with improved motion planning performance, enhanced collision avoidance ability, and less training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助小新同学采纳,获得10
1秒前
xx发布了新的文献求助10
1秒前
王小雨发布了新的文献求助10
2秒前
hhh关闭了hhh文献求助
2秒前
JHK发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
yun完成签到,获得积分20
5秒前
00完成签到,获得积分10
5秒前
qiaorankongling完成签到 ,获得积分10
5秒前
糊涂的夜南完成签到,获得积分10
5秒前
junexi完成签到,获得积分20
5秒前
有且仅有发布了新的文献求助10
6秒前
Blue发布了新的文献求助10
6秒前
6秒前
英俊的未来完成签到,获得积分10
6秒前
7秒前
蛋卷发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
饶天源发布了新的文献求助10
10秒前
10秒前
10秒前
西予发布了新的文献求助10
10秒前
星期八的小马完成签到,获得积分10
10秒前
xiaov发布了新的文献求助10
11秒前
呼呼发布了新的文献求助10
11秒前
共享精神应助歌行者采纳,获得10
12秒前
Vanilla发布了新的文献求助10
12秒前
yungzhi完成签到,获得积分10
12秒前
13秒前
ybsun完成签到,获得积分10
13秒前
15秒前
welt_song完成签到,获得积分10
15秒前
Orange应助carly采纳,获得10
15秒前
swmswy完成签到,获得积分10
15秒前
milkmore完成签到,获得积分10
16秒前
Oooner发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927