Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment

航路点 强化学习 计算机科学 弹道 人工智能 深度学习 人工神经网络 运动规划 移动机器人 任务(项目管理) 机器人 实时计算 机器学习 模拟 工程类 天文 物理 系统工程
作者
Runqi Chai,Hanlin Niu,Joaquín Carrasco,Farshad Arvin,Hujun Yin,Barry Lennox
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5778-5792 被引量:88
标识
DOI:10.1109/tnnls.2022.3209154
摘要

This article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot. This approach is built upon a recently proposed idea of using deep neural networks (DNNs) to approximate the optimal motion trajectories, which has been validated that a fast approximation performance can be achieved. To further enhance the network prediction performance, a recurrent network model capable of fully exploiting the inherent relationship between preoptimized system state and control pairs is advocated. In the lower level, a deep reinforcement learning (DRL)-based collision-free control algorithm is established to achieve the waypoint tracking task in an uncertain environment (e.g., the existence of unexpected obstacles). Since this approach allows the control policy to directly learn from human demonstration data, the time required by the training process can be significantly reduced. Moreover, a noisy prioritized experience replay (PER) algorithm is proposed to improve the exploring rate of control policy. The effectiveness of applying the proposed deep learning-based control is validated by executing a number of simulation and experimental case studies. The simulation result shows that the proposed DRL method outperforms the vanilla PER algorithm in terms of training speed. Experimental videos are also uploaded, and the corresponding results confirm that the proposed strategy is able to fulfill the autonomous exploration mission with improved motion planning performance, enhanced collision avoidance ability, and less training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilili发布了新的文献求助10
1秒前
霸气雪珍发布了新的文献求助10
1秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
mhl11应助科研通管家采纳,获得20
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
狗狗应助科研通管家采纳,获得30
4秒前
今后应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得30
5秒前
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
mhl11应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
6秒前
852应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
iNk应助科研通管家采纳,获得20
7秒前
四季养生人完成签到 ,获得积分10
7秒前
7秒前
qucheng发布了新的文献求助10
8秒前
8秒前
fiona7777完成签到,获得积分10
9秒前
10秒前
10秒前
DONNYTIO发布了新的文献求助10
12秒前
夏凛发布了新的文献求助10
12秒前
懵懂的映菱完成签到,获得积分10
12秒前
tian完成签到 ,获得积分10
12秒前
13秒前
13秒前
Raven发布了新的文献求助10
16秒前
chai完成签到,获得积分10
17秒前
Dr.向发布了新的文献求助10
18秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343067
求助须知:如何正确求助?哪些是违规求助? 2970100
关于积分的说明 8642882
捐赠科研通 2650096
什么是DOI,文献DOI怎么找? 1451115
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407