Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment

航路点 强化学习 计算机科学 弹道 人工智能 深度学习 人工神经网络 运动规划 移动机器人 任务(项目管理) 机器人 实时计算 机器学习 模拟 工程类 天文 物理 系统工程
作者
Runqi Chai,Hanlin Niu,Joaquín Carrasco,Farshad Arvin,Hujun Yin,Barry Lennox
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5778-5792 被引量:109
标识
DOI:10.1109/tnnls.2022.3209154
摘要

This article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot. This approach is built upon a recently proposed idea of using deep neural networks (DNNs) to approximate the optimal motion trajectories, which has been validated that a fast approximation performance can be achieved. To further enhance the network prediction performance, a recurrent network model capable of fully exploiting the inherent relationship between preoptimized system state and control pairs is advocated. In the lower level, a deep reinforcement learning (DRL)-based collision-free control algorithm is established to achieve the waypoint tracking task in an uncertain environment (e.g., the existence of unexpected obstacles). Since this approach allows the control policy to directly learn from human demonstration data, the time required by the training process can be significantly reduced. Moreover, a noisy prioritized experience replay (PER) algorithm is proposed to improve the exploring rate of control policy. The effectiveness of applying the proposed deep learning-based control is validated by executing a number of simulation and experimental case studies. The simulation result shows that the proposed DRL method outperforms the vanilla PER algorithm in terms of training speed. Experimental videos are also uploaded, and the corresponding results confirm that the proposed strategy is able to fulfill the autonomous exploration mission with improved motion planning performance, enhanced collision avoidance ability, and less training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
破晓完成签到,获得积分10
3秒前
小周发布了新的文献求助10
3秒前
3秒前
SciGPT应助pumpkin采纳,获得10
3秒前
Vizz发布了新的文献求助10
4秒前
张瑞彬发布了新的文献求助10
4秒前
4秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
7秒前
新世界的蜗牛完成签到,获得积分10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
litaozhou发布了新的文献求助10
7秒前
7秒前
朝暮应助皮念寒采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
萧水白应助科研通管家采纳,获得50
7秒前
10秒前
俭朴从安完成签到,获得积分10
10秒前
今后应助坚强幼荷采纳,获得10
11秒前
刘六刘发布了新的文献求助10
11秒前
科研通AI2S应助杨三多采纳,获得10
12秒前
13秒前
7890733发布了新的文献求助10
13秒前
科研通AI5应助黑土采纳,获得20
14秒前
14秒前
15秒前
难过忆山完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234