功能性反应
数学
非线性系统
Dirichlet边界条件
应用数学
不动点指数
李雅普诺夫函数
摄动(天文学)
边值问题
理论(学习稳定性)
增长率
数学分析
捕食者
捕食
计算机科学
物理
生态学
几何学
量子力学
生物
机器学习
作者
Xiaozhou Feng,Chenghua Sun,Wenbin Yang,Changtong Li
标识
DOI:10.1016/j.nonrwa.2022.103766
摘要
In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the main parameter, we mainly investigate the existence, stability and exact number of positive solutions when m is large and other parameters meet a certain range of conditions. Meanwhile, some numerical simulations are applied to illustrate the analytical results. The main techniques used in this paper include the fixed point index theory, the super-sub solution method, the Lyapunov-Schmidt reduction procedure and the perturbation principle.
科研通智能强力驱动
Strongly Powered by AbleSci AI