纳米孔
生物膜
化学
吸附
化学工程
纳米颗粒
磁性纳米粒子
核化学
材料科学
微生物学
纳米技术
细菌
有机化学
生物
工程类
遗传学
作者
Mirza Muhammad Faran Ashraf Baig,Arshia Fatima,Xiuli Gao,Awais Farid,Muhammad Ajmal Khan,Abdul Wasy Zia,Hongkai Wu
标识
DOI:10.1016/j.jconrel.2022.10.009
摘要
In this study, novel multilayered magnetic nanoparticles (ML-MNPs) loaded with DNase and/or vancomycin (Vanc) were fabricated for eliminating multispecies biofilms. Iron-oxide MNPs (IO-core) (500-800 nm) were synthesized via co-precipitation; further, the IO-core was coated with heavy-metal-based layers (Ag and MoS2 NPs) using solvent evaporation. DNase and Vanc were loaded onto the outermost layer of the ML-MNP formed by nanoporous MoS2 NPs through physical deposition and adsorption. The biofilms of S. mutans or E. faecalis (or both) were formed in a brain-heart-infusion broth (BHI) for 3 days, followed by treatment with ML-MNPs for 24 h. The results revealed that coatings of Ag (200 nm) and ultrasmall MoS2 (20 nm) were assembled as outer layers of ML-MNPs successfully, and they formed Ag-Fe3O4@MoS2 MNPs (3-5 μm). The DNase-Vanc-loaded MNPs caused nanochannels digging and resulted in the enhanced penetration of MNPs towards the bottom layers of biofilm, which resulted in a decrease in the thickness of the 72-h biofilm from 48 to 58 μm to 0-4 μm. The sustained release of Vanc caused a synergistic bacterial killing up to 96%-100%. The heavy-metal-based layers of MNPs act as nanozymes to interfere with bacterial metabolism and proliferation, which adversely affects biofilm integrity. Further, loading DNase/Vanc onto the nanoporous-MoS2-layer of ML-MNPs promoted nanochannel creation through the biofilm. Therefore, DNase-and Vanc-loaded ML-MNPs exhibited potent effects on biofilm disruption and bacterial killing.
科研通智能强力驱动
Strongly Powered by AbleSci AI