Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models

纳滤 可解释性 人工智能 机器学习 反渗透 特征选择 集成学习 支持向量机 计算机科学 过程(计算) 集合预报 生化工程 化学 工艺工程 生物系统 工程类 生物化学 生物 操作系统
作者
Tengyi Zhu,Yu Zhang,Cuicui Tao,Wenxuan Chen,Haomiao Cheng
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:857: 159348-159348 被引量:36
标识
DOI:10.1016/j.scitotenv.2022.159348
摘要

Efficiency improvement in contaminant removal by nanofiltration (NF) and reverse osmosis (RO) membranes is a multidimensional process involving membrane material selection and experimental condition optimization. It is unrealistic to explore the contributions of diverse influencing factors to the removal rate by trial-and-error experimentation. However, the advanced machine learning (ML) method is a powerful tool to simulate this complex decision-making process. Here, 4 traditional learning algorithms (MLR, SVM, ANN, kNN) and 4 ensemble learning algorithms (RF, GBDT, XGBoost, LightGBM) were applied to predict the removal efficiency of contaminants. Results reported here demonstrate that ensemble models showed significantly better predictive performance than traditional models. More importantly, this study achieved a compelling tradeoff between accuracy and interpretability for ensemble models with an effective model interpretation approach, which revealed the mutual interaction mechanism between the membrane material, contaminants and experimental conditions in membrane separation. Additionally, feature selection was for the first time achieved based on the aforementioned model interpretation method to determine the most important variable influencing the contaminant removal rate. Ultimately, the four ensemble models retrained by the selected variables achieved distinguished prediction performance (R2adj = 92.4 %-99.5 %). MWCO (membrane molecular weight cut-off), McGowan volume of solute (V) and molecular weight (MW) of the compound were demonstrated to be the most important influencing factors in contaminant removal by the NF and RO processes. Overall, the proposed methods in this study can facilitate versatile complex decision-making processes in the environmental field, particularly in contaminant removal by advanced physicochemical separation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swy完成签到,获得积分10
刚刚
踏实谷蓝完成签到 ,获得积分10
2秒前
大饼发布了新的文献求助10
3秒前
夏天发布了新的文献求助10
4秒前
yangfeidong完成签到,获得积分10
4秒前
5秒前
5秒前
RenHP完成签到,获得积分10
6秒前
深情安青应助走进科学采纳,获得10
6秒前
6秒前
惊回完成签到,获得积分10
6秒前
7秒前
7秒前
不玩手机发布了新的文献求助10
8秒前
wen发布了新的文献求助10
9秒前
11秒前
11秒前
evergarden完成签到 ,获得积分10
11秒前
wy.he应助香菜兔子采纳,获得10
12秒前
lorry发布了新的文献求助10
12秒前
所所应助ZW采纳,获得10
13秒前
啦啦啦完成签到,获得积分10
14秒前
脑洞疼应助金虎采纳,获得10
14秒前
14秒前
暮潇牧笑发布了新的文献求助10
14秒前
iNk应助王蓉采纳,获得20
16秒前
cyan完成签到 ,获得积分10
16秒前
16秒前
16秒前
潇洒雁梅发布了新的文献求助10
17秒前
17秒前
冰姗完成签到,获得积分10
17秒前
HHHH完成签到 ,获得积分10
18秒前
Calvin-funsom完成签到,获得积分10
19秒前
19秒前
墨竹青浅发布了新的文献求助20
19秒前
大个应助5555采纳,获得10
20秒前
风趣的从安完成签到,获得积分10
20秒前
杜嘟嘟发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708