Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models

纳滤 可解释性 人工智能 机器学习 反渗透 特征选择 集成学习 支持向量机 计算机科学 过程(计算) 集合预报 生化工程 化学 工艺工程 生物系统 工程类 生物化学 生物 操作系统
作者
Tengyi Zhu,Yu Zhang,Cuicui Tao,Wenxuan Chen,Haomiao Cheng
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:857: 159348-159348 被引量:44
标识
DOI:10.1016/j.scitotenv.2022.159348
摘要

Efficiency improvement in contaminant removal by nanofiltration (NF) and reverse osmosis (RO) membranes is a multidimensional process involving membrane material selection and experimental condition optimization. It is unrealistic to explore the contributions of diverse influencing factors to the removal rate by trial-and-error experimentation. However, the advanced machine learning (ML) method is a powerful tool to simulate this complex decision-making process. Here, 4 traditional learning algorithms (MLR, SVM, ANN, kNN) and 4 ensemble learning algorithms (RF, GBDT, XGBoost, LightGBM) were applied to predict the removal efficiency of contaminants. Results reported here demonstrate that ensemble models showed significantly better predictive performance than traditional models. More importantly, this study achieved a compelling tradeoff between accuracy and interpretability for ensemble models with an effective model interpretation approach, which revealed the mutual interaction mechanism between the membrane material, contaminants and experimental conditions in membrane separation. Additionally, feature selection was for the first time achieved based on the aforementioned model interpretation method to determine the most important variable influencing the contaminant removal rate. Ultimately, the four ensemble models retrained by the selected variables achieved distinguished prediction performance (R2adj = 92.4 %-99.5 %). MWCO (membrane molecular weight cut-off), McGowan volume of solute (V) and molecular weight (MW) of the compound were demonstrated to be the most important influencing factors in contaminant removal by the NF and RO processes. Overall, the proposed methods in this study can facilitate versatile complex decision-making processes in the environmental field, particularly in contaminant removal by advanced physicochemical separation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOME完成签到,获得积分20
刚刚
刚刚
刚刚
韩韩完成签到 ,获得积分10
1秒前
秉文完成签到,获得积分10
3秒前
4秒前
HOME发布了新的文献求助10
5秒前
dian完成签到 ,获得积分10
6秒前
小鹿完成签到,获得积分10
7秒前
千堆雪完成签到,获得积分10
7秒前
7秒前
张不大完成签到,获得积分10
8秒前
华仔应助阳光的电脑采纳,获得10
9秒前
赘婿应助小全采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得50
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Auston_zhong应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
liv发布了新的文献求助10
12秒前
15秒前
科研通AI5应助shepherd采纳,获得10
16秒前
雾野发布了新的文献求助10
17秒前
Owen应助畅快夏天采纳,获得10
18秒前
细心的不乐完成签到,获得积分10
19秒前
19秒前
RRRabbit完成签到,获得积分10
20秒前
20秒前
刘善行发布了新的文献求助150
21秒前
丰富的听云完成签到,获得积分10
21秒前
22秒前
quan完成签到,获得积分10
22秒前
22秒前
艾科研发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762