PRO-Face: A Generic Framework for Privacy-preserving Recognizable Obfuscation of Face Images

混淆 面子(社会学概念) 计算机科学 变形 认证(法律) 特征(语言学) 面部识别系统 身份(音乐) 人工智能 计算机安全 计算机视觉 特征提取 声学 物理 哲学 语言学 社会学 社会科学
作者
Yuan Lin,Linguo Liu,Xiao Pu,Zhao Li,Hongbo Li,Xinbo Gao
标识
DOI:10.1145/3503161.3548202
摘要

A number of applications (e.g., video surveillance and authentication) rely on automated face recognition to guarantee functioning of secure services, and meanwhile, have to take into account the privacy of individuals exposed under camera systems. This is the so-called Privacy-Utility trade-off. However, most existing approaches to facial privacy protection focus on removing identifiable visual information from images, leaving protected face unrecognizable to machine, which sacrifice utility for privacy. To tackle the privacy-utility challenge, we propose a novel, generic, effective, yet lightweight framework for Privacy-preserving Recognizable Obfuscation of Face images (named as PRO-Face). The framework allows one to first process a face image using any preferred obfuscation, such as image blur, pixelate and face morphing. It then leverages a Siamese network to fuse the original image with its obfuscated form, generating the final protected image visually similar to the obfuscated one from human perception (for privacy) but still recognized as the original identity by machine (for utility). The framework supports various obfuscations for facial anonymization. The face recognition can be performed accurately not only across anonymized images but also between plain and anonymized ones, based on only pre-trained recognizers. Those feature the "generic" merit of the proposed framework. In-depth objective and subjective evaluations demonstrate the effectiveness of the proposed framework in both privacy protection and utility preservation under distinct scenarios. Our source code, models and any supplementary materials are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tiancu发布了新的文献求助10
刚刚
刚刚
丘比特应助梨梨采纳,获得10
1秒前
程之杭完成签到,获得积分10
1秒前
科研通AI2S应助1122采纳,获得10
2秒前
李海博完成签到 ,获得积分20
2秒前
2秒前
过时的访梦完成签到,获得积分10
3秒前
zw发布了新的文献求助50
3秒前
海豚完成签到 ,获得积分10
4秒前
维拉帕米发布了新的文献求助10
5秒前
科研通AI2S应助123采纳,获得10
10秒前
11秒前
yu发布了新的文献求助10
11秒前
Hello应助清脆的涔采纳,获得10
12秒前
12秒前
谨慎的橘子完成签到 ,获得积分10
13秒前
无花果应助香蕉子骞采纳,获得10
14秒前
在路上应助三更笔舞采纳,获得10
15秒前
16秒前
王二发布了新的文献求助10
16秒前
美满的涔发布了新的文献求助10
16秒前
lng发布了新的文献求助30
16秒前
17秒前
1111发布了新的文献求助10
17秒前
英俊的铭应助hun采纳,获得10
18秒前
搜集达人应助朴实的剑通采纳,获得30
18秒前
tiancu完成签到,获得积分10
19秒前
阳光的中蓝完成签到,获得积分10
22秒前
慕青应助周芷卉采纳,获得10
22秒前
zjh发布了新的文献求助10
22秒前
成佳木发布了新的文献求助10
23秒前
桐桐应助风枫叶采纳,获得10
23秒前
24秒前
丘比特应助乐乐乐乐乐乐采纳,获得10
24秒前
yu发布了新的文献求助10
25秒前
我是老大应助WeiX__Chen采纳,获得10
26秒前
26秒前
星辰大海应助12li采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079