Efficient Electrocardiogram-based Arrhythmia Detection Utilizing R-peaks and Machine Learning

希尔伯特-黄变换 人工智能 心律失常 计算机科学 机器学习 滤波器(信号处理) 信号处理 深度学习 F1得分 二元分类 模式识别(心理学) 算法 支持向量机 心房颤动 数字信号处理 心脏病学 医学 计算机硬件 计算机视觉
作者
Pham Văn Thinh,Van-Su Pham,M.T. Nguyen,Hai-Chau Le
标识
DOI:10.1109/icsse58758.2023.10227145
摘要

The rise in heart-related diseases has led to a need for proper automatic diagnosis methods to identify irregular heart problems. It has proven to be challenging to promptly and accurately diagnose many complicated and interferential symptom diseases including arrhythmia. Recently, thanks to the evolution of artificial intelligence (AI) and the advance in signal processing, automated arrhythmia detection has become easier and widely applied for physicians and practitioners with machine learning (ML) techniques and the only use of electrocardiograms (ECG). In this paper, we propose an ECG-based machine learning arrhythmia detection approach that exploits R-peak detection and machine learning. Our proposed solution targeting a binary classification of heartbeats employs an efficient R-peak detection that uses a Butterworth bypass filter, Ensemble Empirical Mode Decomposition (EEMD), and Hilbert Transforms (HT) for processing ECG signals, and applies the most effective machine learning algorithm among typical ML algorithms to improve the performance of the arrhythmia diagnosis. In order to select the most suitable one with the highest achievable performance, typical ML algorithms such as BG, BS, KNN, and RF were investigated. A popular public dataset, MIT-BIH Arrhythmia, is used for the numerical experiments. The attained results prove that our developed solution outperforms the notable traditional algorithms and it offers the best performance with an accuracy of 93.4%, a sensitivity of 95.4%, and an F1-score of 96.3%. The high obtained F1-score implies that our solution can overcome the data imbalance to detect arrhythmia correctly and be effective in practical clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彦祖完成签到,获得积分10
1秒前
淡定鸿涛完成签到,获得积分10
1秒前
xie老板发布了新的文献求助10
1秒前
糊涂涂完成签到 ,获得积分10
2秒前
2秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
Suzzne发布了新的文献求助10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
yanjun_j应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得80
4秒前
4秒前
4秒前
4秒前
8R60d8应助科研通管家采纳,获得10
5秒前
yunyii发布了新的文献求助50
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
六步郎发布了新的文献求助10
6秒前
7秒前
情怀应助zzq采纳,获得10
7秒前
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847