Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

医学 袖状胃切除术 减肥 回顾性队列研究 队列 体质指数 队列研究 外科 物理疗法 肥胖 胃分流术 内科学
作者
Patrick Saux,Pierre Bauvin,Violeta Raverdy,Julien Teigny,Hélène Verkindt,Tomy Soumphonphakdy,Maxence Debert,Anne Jacobs,Daan Jacobs,Valerie M. Monpellier,Phong Ching Lee,Chin Hong Lim,Johanna C. Andersson‐Assarsson,Lena Carlsson,Per‐Arne Svensson,Florence Galtier,Guélareh Dezfoulian,Mihaela Moldovanu,S. Andrieux,Julien Couster,Marie L. Lepage,Erminia Lembo,Ornella Verrastro,Maud Robert,Paulina Salminen,Geltrude Mingrone,Ralph Peterli,Ricardo V. Cohen,Carlos Zerrweck,David Nocca,Carel W. le Roux,Robert Caïazzo,Pierre‐Marie Preux,François Pattou
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (10): e692-e702 被引量:15
标识
DOI:10.1016/s2589-7500(23)00135-8
摘要

Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery.In this multinational retrospective observational study we enrolled adult participants (aged ≥18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year follow-up after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI.10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75·3%) were female, 2530 (24·7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2·8 kg/m2 (95% CI 2·6-3·0) and mean RMSE BMI was 4·7 kg/m2 (4·4-5·0), and the mean difference between predicted and observed BMI was -0·3 kg/m2 (SD 4·7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery.We developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions.SOPHIA Innovative Medicines Initiative 2 Joint Undertaking, supported by the EU's Horizon 2020 research and innovation programme, the European Federation of Pharmaceutical Industries and Associations, Type 1 Diabetes Exchange, and the Juvenile Diabetes Research Foundation and Obesity Action Coalition; Métropole Européenne de Lille; Agence Nationale de la Recherche; Institut national de recherche en sciences et technologies du numérique through the Artificial Intelligence chair Apprenf; Université de Lille Nord Europe's I-SITE EXPAND as part of the Bandits For Health project; Laboratoire d'excellence European Genomic Institute for Diabetes; Soutien aux Travaux Interdisciplinaires, Multi-établissements et Exploratoires programme by Conseil Régional Hauts-de-France (volet partenarial phase 2, project PERSO-SURG).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云_123发布了新的文献求助10
刚刚
英姑应助大曼采纳,获得10
1秒前
mei完成签到,获得积分10
1秒前
慕青应助淡然的大碗采纳,获得10
2秒前
君寻完成签到 ,获得积分10
2秒前
mouxq发布了新的文献求助10
2秒前
2秒前
坚强亦丝应助司徒无剑采纳,获得10
3秒前
anjun完成签到,获得积分10
3秒前
上官蔚蓝发布了新的文献求助10
3秒前
Kev发布了新的文献求助50
3秒前
迅速的易巧完成签到 ,获得积分10
4秒前
Luke发布了新的文献求助10
4秒前
4秒前
怕孤独的从阳完成签到,获得积分10
5秒前
5秒前
乐乐应助祥子采纳,获得10
6秒前
隐形的书瑶完成签到 ,获得积分10
7秒前
7秒前
潇洒的妙芙完成签到,获得积分10
8秒前
云_123完成签到,获得积分10
8秒前
个性的初南完成签到,获得积分10
8秒前
顾矜应助666666采纳,获得10
8秒前
8秒前
酷波er应助1112采纳,获得10
9秒前
隐形曼青应助感性的俊驰采纳,获得10
9秒前
10秒前
10秒前
北城栀子刂AZ完成签到 ,获得积分10
10秒前
嘟嘟完成签到,获得积分10
10秒前
传奇3应助xl1990采纳,获得10
10秒前
Yoki完成签到,获得积分10
10秒前
xmx完成签到 ,获得积分10
11秒前
成就馒头发布了新的文献求助10
11秒前
11秒前
xfy完成签到,获得积分10
12秒前
12秒前
科研学渣请大神带完成签到,获得积分10
13秒前
crazy发布了新的文献求助10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825