清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

医学 袖状胃切除术 减肥 回顾性队列研究 队列 体质指数 队列研究 外科 物理疗法 肥胖 胃分流术 内科学
作者
Patrick Saux,Pierre Bauvin,Violeta Raverdy,Julien Teigny,Hélène Verkindt,Tomy Soumphonphakdy,Maxence Debert,Anne Jacobs,Daan Jacobs,Valerie M. Monpellier,Phong Ching Lee,Chin Hong Lim,Johanna C. Andersson‐Assarsson,Lena Carlsson,Per‐Arne Svensson,Florence Galtier,Guélareh Dezfoulian,Mihaela Moldovanu,S. Andrieux,Julien Couster
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (10): e692-e702 被引量:42
标识
DOI:10.1016/s2589-7500(23)00135-8
摘要

Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. Methods In this multinational retrospective observational study we enrolled adult participants (aged $\ge$18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75$\bullet$3%) were female, 2530 (24$\bullet$7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2$\bullet$8 kg/m${}^2$ (95% CI 2$\bullet$6-3$\bullet$0) and mean RMSE BMI was 4$\bullet$7 kg/m${}^2$ (4$\bullet$4-5$\bullet$0), and the mean difference between predicted and observed BMI was-0$\bullet$3 kg/m${}^2$ (SD 4$\bullet$7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. InterpretationWe developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的丹雪完成签到,获得积分10
19秒前
上官若男应助ykssss采纳,获得10
46秒前
56秒前
科研通AI6.1应助悠悠采纳,获得10
1分钟前
李燕伟完成签到 ,获得积分10
1分钟前
1分钟前
悠悠发布了新的文献求助10
1分钟前
英姑应助Ellen采纳,获得30
1分钟前
1分钟前
2分钟前
ykssss发布了新的文献求助10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
2分钟前
内向的绿应助读书的时候采纳,获得10
2分钟前
3分钟前
hhuajw应助读书的时候采纳,获得10
3分钟前
3分钟前
Ellen发布了新的文献求助30
3分钟前
顾矜应助读书的时候采纳,获得10
4分钟前
潜行者完成签到 ,获得积分10
4分钟前
Alger完成签到,获得积分10
4分钟前
科研通AI6.1应助悠悠采纳,获得10
4分钟前
qq完成签到 ,获得积分10
4分钟前
5分钟前
悠悠完成签到,获得积分20
5分钟前
5分钟前
悠悠发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高挑的白旋风完成签到,获得积分10
5分钟前
6分钟前
阿俊完成签到 ,获得积分10
6分钟前
lydiaabc完成签到,获得积分10
6分钟前
6分钟前
7分钟前
輕瘋发布了新的文献求助10
7分钟前
Ava应助读书的时候采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732540
求助须知:如何正确求助?哪些是违规求助? 5340403
关于积分的说明 15322326
捐赠科研通 4878049
什么是DOI,文献DOI怎么找? 2620881
邀请新用户注册赠送积分活动 1570054
关于科研通互助平台的介绍 1526759