Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

医学 袖状胃切除术 减肥 回顾性队列研究 队列 体质指数 队列研究 外科 物理疗法 肥胖 胃分流术 内科学
作者
Patrick Saux,Pierre Bauvin,Violeta Raverdy,Julien Teigny,Hélène Verkindt,Tomy Soumphonphakdy,Maxence Debert,Anne Jacobs,Daan Jacobs,Valerie M. Monpellier,Phong Ching Lee,Chin Hong Lim,Johanna C. Andersson‐Assarsson,Lena Carlsson,Per‐Arne Svensson,Florence Galtier,Guélareh Dezfoulian,Mihaela Moldovanu,S. Andrieux,Julien Couster
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (10): e692-e702 被引量:30
标识
DOI:10.1016/s2589-7500(23)00135-8
摘要

Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. Methods In this multinational retrospective observational study we enrolled adult participants (aged $\ge$18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75$\bullet$3%) were female, 2530 (24$\bullet$7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2$\bullet$8 kg/m${}^2$ (95% CI 2$\bullet$6-3$\bullet$0) and mean RMSE BMI was 4$\bullet$7 kg/m${}^2$ (4$\bullet$4-5$\bullet$0), and the mean difference between predicted and observed BMI was-0$\bullet$3 kg/m${}^2$ (SD 4$\bullet$7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. InterpretationWe developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blueming发布了新的文献求助10
刚刚
烟花应助mealies采纳,获得10
1秒前
LUKW完成签到,获得积分10
1秒前
坚强白凝完成签到,获得积分10
2秒前
strack发布了新的文献求助10
3秒前
善学以致用应助黄同学采纳,获得10
4秒前
long完成签到,获得积分0
4秒前
4秒前
4秒前
5秒前
Rui发布了新的文献求助10
5秒前
一一一发布了新的文献求助10
6秒前
爆米花应助研友_ngX12Z采纳,获得10
7秒前
7秒前
CAOHOU举报安然求助涉嫌违规
7秒前
量子星尘发布了新的文献求助10
8秒前
chem发布了新的文献求助10
8秒前
赵哈哈发布了新的文献求助10
8秒前
迦佭发布了新的文献求助10
10秒前
KLED发布了新的文献求助10
11秒前
所所应助zhb采纳,获得10
11秒前
bingbing完成签到,获得积分10
12秒前
12秒前
zhangzhang发布了新的文献求助10
14秒前
笑羽完成签到,获得积分0
14秒前
16秒前
16秒前
16秒前
黄同学发布了新的文献求助10
16秒前
18秒前
会冒泡的小橘子完成签到 ,获得积分10
19秒前
小二郎应助一一一采纳,获得10
19秒前
inin发布了新的文献求助10
21秒前
pipipeekapoo完成签到 ,获得积分10
21秒前
21秒前
21秒前
满意冷荷完成签到,获得积分10
22秒前
宴之思完成签到,获得积分10
23秒前
Either完成签到,获得积分10
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232