A Survey of Controllable Text Generation Using Transformer-based Pre-trained Language Models

计算机科学 可解释性 变压器 自然语言生成 人工智能 数据科学 机器学习 自然语言 物理 量子力学 电压
作者
Hanqing Zhang,Haolin Song,Shaoyu Li,Ming Zhou,Dandan Song
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (3): 1-37 被引量:30
标识
DOI:10.1145/3617680
摘要

Controllable Text Generation (CTG) is an emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used Transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the limited level of interpretability of deep neural networks, the controllability of these methods needs to be guaranteed. To this end, controllable text generation using Transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the past 3 to 4 years, targeting different CTG tasks that require different types of controlled constraints. In this article, we present a systematic critical review on the common tasks, main approaches, and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey article to summarize the state-of-the-art CTG techniques from the perspective of Transformer-based PLMs. We hope it can help researchers and practitioners in the related fields to quickly track the academic and technological frontier, providing them with a landscape of the area and a roadmap for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助文艺鞋垫采纳,获得10
1秒前
seeyou完成签到 ,获得积分10
2秒前
2秒前
Orange应助Morgen采纳,获得10
2秒前
4秒前
4秒前
5秒前
5秒前
mmm完成签到,获得积分10
5秒前
呼啦呼啦发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
LL发布了新的文献求助10
9秒前
胖胖完成签到 ,获得积分10
9秒前
liz发布了新的文献求助10
10秒前
开朗从安应助周shang采纳,获得10
11秒前
Lucas应助BK1BK22采纳,获得10
12秒前
mmm发布了新的文献求助10
12秒前
13秒前
忧郁绣连发布了新的文献求助10
13秒前
暮暮完成签到,获得积分10
14秒前
15秒前
16秒前
顺心尔阳发布了新的文献求助10
17秒前
可爱的电话完成签到,获得积分10
18秒前
19秒前
西红柿完成签到,获得积分0
19秒前
li完成签到,获得积分10
20秒前
zhouzhou完成签到 ,获得积分10
20秒前
12521发布了新的文献求助30
21秒前
复杂的方盒完成签到 ,获得积分10
22秒前
23秒前
草莓蛋糕发布了新的文献求助30
23秒前
顺心尔阳完成签到,获得积分10
24秒前
zxy完成签到,获得积分10
25秒前
26秒前
白瑾完成签到,获得积分10
26秒前
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023