Entropy and improved k‐nearest neighbor search based under‐sampling (ENU) method to handle class overlap in imbalanced datasets

欠采样 熵(时间箭头) 计算机科学 k-最近邻算法 人工智能 模式识别(心理学) 排名(信息检索) 信息丢失 机器学习 数据挖掘 量子力学 物理
作者
Anil Kumar,Dinesh Singh,Rama Shankar Yadav
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (2) 被引量:10
标识
DOI:10.1002/cpe.7894
摘要

Summary Many real‐world application datasets such as medical diagnostics, fraud detection, biological classification, risk analysis and so forth are facing class imbalance and overlapping problems. It seriously affects the learning of the classification model on these datasets because minority instances are not visible to the learner in the overlapped region and the performance of learners is biased towards the majority. Undersampling‐based methods are the most commonly used techniques to handle the above‐mentioned problems. The major problem with these methods is excessive elimination and information loss, that is, unable to retain potential informative majority instances. We propose a novel entropy and neighborhood‐based undersampling (ENU) that removed only those majority instances from the overlapped region which are having less informativeness (entropy) score than the threshold entropy. Most of such existing methods improved sensitivity scores significantly but not in many other performance contexts. ENU first computes entropy and threshold score for majority instances and, a local density‐based improved KNN search is used to identify overlapped majority instances. To tackle the problem effectively ENU defined four improved KNN‐based procedures (ENUB, ENUT, ENUC, and ENUR) for effective undersampling. ENU outperformed in sensitivity, G‐mean, and F1‐score average ranking with reduced information loss as compared to the existing state‐of‐the‐art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jfaioe完成签到,获得积分10
刚刚
1秒前
唐晓秦完成签到,获得积分10
1秒前
汉堡包应助玩命的化蛹采纳,获得10
1秒前
2秒前
张益萌给WH的求助进行了留言
3秒前
搜集达人应助千与千寻采纳,获得10
3秒前
墨殇璃完成签到,获得积分10
4秒前
折花浅笑完成签到,获得积分10
4秒前
华仔应助Jc采纳,获得10
4秒前
5秒前
典典发布了新的文献求助10
5秒前
yalan完成签到,获得积分10
6秒前
chenman9397完成签到 ,获得积分10
6秒前
呆萌语梦完成签到,获得积分10
7秒前
7秒前
11秒前
爆米花应助MQ&FF采纳,获得10
11秒前
贪玩枫叶完成签到 ,获得积分10
12秒前
星辰大海应助laomuzhu采纳,获得10
12秒前
13秒前
大个应助可爱的霖霖兔采纳,获得10
13秒前
毛豆完成签到,获得积分0
13秒前
萱萱完成签到,获得积分10
14秒前
14秒前
失眠的友卉完成签到,获得积分10
16秒前
16秒前
ZengJuan发布了新的文献求助10
17秒前
陈小白发布了新的文献求助10
17秒前
Leemon33发布了新的文献求助10
19秒前
20秒前
Stl123发布了新的文献求助10
21秒前
北风语完成签到,获得积分10
21秒前
想游泳的鹰完成签到,获得积分10
22秒前
23秒前
YORLAN完成签到 ,获得积分10
23秒前
包子完成签到,获得积分10
24秒前
ZengJuan完成签到,获得积分10
25秒前
26秒前
Ava应助lzj采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295786
求助须知:如何正确求助?哪些是违规求助? 2931649
关于积分的说明 8453323
捐赠科研通 2604317
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661048
邀请新用户注册赠送积分活动 644016