Entropy and improved k‐nearest neighbor search based under‐sampling (ENU) method to handle class overlap in imbalanced datasets

欠采样 熵(时间箭头) 计算机科学 k-最近邻算法 人工智能 模式识别(心理学) 排名(信息检索) 信息丢失 机器学习 数据挖掘 量子力学 物理
作者
Anil Kumar,Dinesh Singh,Rama Shankar Yadav
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (2) 被引量:10
标识
DOI:10.1002/cpe.7894
摘要

Summary Many real‐world application datasets such as medical diagnostics, fraud detection, biological classification, risk analysis and so forth are facing class imbalance and overlapping problems. It seriously affects the learning of the classification model on these datasets because minority instances are not visible to the learner in the overlapped region and the performance of learners is biased towards the majority. Undersampling‐based methods are the most commonly used techniques to handle the above‐mentioned problems. The major problem with these methods is excessive elimination and information loss, that is, unable to retain potential informative majority instances. We propose a novel entropy and neighborhood‐based undersampling (ENU) that removed only those majority instances from the overlapped region which are having less informativeness (entropy) score than the threshold entropy. Most of such existing methods improved sensitivity scores significantly but not in many other performance contexts. ENU first computes entropy and threshold score for majority instances and, a local density‐based improved KNN search is used to identify overlapped majority instances. To tackle the problem effectively ENU defined four improved KNN‐based procedures (ENUB, ENUT, ENUC, and ENUR) for effective undersampling. ENU outperformed in sensitivity, G‐mean, and F1‐score average ranking with reduced information loss as compared to the existing state‐of‐the‐art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助黎明森采纳,获得10
刚刚
1秒前
sdaDAS发布了新的文献求助10
1秒前
2秒前
CipherSage应助guochang采纳,获得10
2秒前
Edward发布了新的文献求助30
3秒前
浮游应助和老爹豆豆采纳,获得10
3秒前
闫小天天完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
666发布了新的文献求助10
5秒前
英俊的铭应助热情的远锋采纳,获得10
5秒前
小二郎应助vebb采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
和谐诗双发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
7秒前
Epiphany发布了新的文献求助10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
蔡宇滔完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Ava应助涔雨采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058