Entropy and improved k‐nearest neighbor search based under‐sampling (ENU) method to handle class overlap in imbalanced datasets

欠采样 熵(时间箭头) 计算机科学 k-最近邻算法 人工智能 模式识别(心理学) 排名(信息检索) 信息丢失 机器学习 数据挖掘 量子力学 物理
作者
Anil Kumar,Dinesh Singh,Rama Shankar Yadav
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:36 (2) 被引量:10
标识
DOI:10.1002/cpe.7894
摘要

Summary Many real‐world application datasets such as medical diagnostics, fraud detection, biological classification, risk analysis and so forth are facing class imbalance and overlapping problems. It seriously affects the learning of the classification model on these datasets because minority instances are not visible to the learner in the overlapped region and the performance of learners is biased towards the majority. Undersampling‐based methods are the most commonly used techniques to handle the above‐mentioned problems. The major problem with these methods is excessive elimination and information loss, that is, unable to retain potential informative majority instances. We propose a novel entropy and neighborhood‐based undersampling (ENU) that removed only those majority instances from the overlapped region which are having less informativeness (entropy) score than the threshold entropy. Most of such existing methods improved sensitivity scores significantly but not in many other performance contexts. ENU first computes entropy and threshold score for majority instances and, a local density‐based improved KNN search is used to identify overlapped majority instances. To tackle the problem effectively ENU defined four improved KNN‐based procedures (ENUB, ENUT, ENUC, and ENUR) for effective undersampling. ENU outperformed in sensitivity, G‐mean, and F1‐score average ranking with reduced information loss as compared to the existing state‐of‐the‐art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
Husky完成签到,获得积分10
2秒前
搜集达人应助温暖的铅笔采纳,获得10
3秒前
wanci应助xx采纳,获得10
3秒前
天天快乐应助yangzhang采纳,获得10
3秒前
方勇飞发布了新的文献求助10
4秒前
4秒前
小林发布了新的文献求助10
4秒前
4秒前
Skyyeats完成签到,获得积分10
5秒前
棍棍来也完成签到,获得积分10
7秒前
srics发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助hkf采纳,获得10
7秒前
7秒前
8秒前
陈瞿硕发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
11秒前
无敌W完成签到,获得积分10
11秒前
英姑应助王浩采纳,获得10
11秒前
12秒前
shinn发布了新的文献求助10
12秒前
CorisKen应助什米采纳,获得50
12秒前
扣子完成签到,获得积分10
12秒前
CLMY完成签到,获得积分10
12秒前
ZZ发布了新的文献求助10
13秒前
CodeCraft应助回鱼采纳,获得10
13秒前
Miraitowa发布了新的文献求助10
13秒前
坚定的琦发布了新的文献求助10
14秒前
14秒前
zwy109发布了新的文献求助10
14秒前
hinata发布了新的文献求助10
14秒前
15秒前
15秒前
田改发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193