Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鳄鱼天使完成签到,获得积分10
1秒前
Ava应助山下梅子酒采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
czy完成签到,获得积分10
4秒前
朴素山兰发布了新的文献求助10
4秒前
4秒前
明媚发布了新的文献求助10
4秒前
桐桐应助高中生采纳,获得10
4秒前
5秒前
deep发布了新的文献求助10
6秒前
6秒前
scarlett完成签到,获得积分10
6秒前
英吉利25发布了新的文献求助10
6秒前
old幽露露完成签到 ,获得积分10
7秒前
江雯君完成签到,获得积分10
7秒前
Cecilia发布了新的文献求助10
7秒前
溪川流完成签到,获得积分10
8秒前
jason完成签到,获得积分0
8秒前
怕孤独的广缘完成签到 ,获得积分10
8秒前
香蕉觅云应助大反应釜采纳,获得10
8秒前
月夜孤影完成签到,获得积分10
9秒前
9秒前
9秒前
今后应助矮小的海豚采纳,获得10
9秒前
Miners发布了新的文献求助10
9秒前
笔墨留香发布了新的文献求助10
9秒前
研友_VZG7GZ应助王先生采纳,获得10
10秒前
iwonder完成签到 ,获得积分10
10秒前
可爱的函函应助追寻采纳,获得10
10秒前
11秒前
清脆火龙果完成签到,获得积分10
11秒前
可爱的函函应助暴躁的苡采纳,获得10
11秒前
我爱吃火锅完成签到,获得积分10
12秒前
12秒前
7九完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165