已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜鸡游泳发布了新的文献求助10
1秒前
SiO2完成签到 ,获得积分0
2秒前
2秒前
君寻完成签到 ,获得积分10
3秒前
3秒前
3秒前
小蘑菇应助babalababa采纳,获得10
4秒前
4秒前
5秒前
中标发布了新的文献求助10
7秒前
7秒前
7秒前
公西凝芙发布了新的文献求助10
9秒前
11秒前
12秒前
12秒前
12秒前
Royal耗子完成签到,获得积分10
14秒前
haobhaobhaob发布了新的文献求助10
15秒前
16秒前
科研通AI5应助豆豆可采纳,获得10
16秒前
17秒前
Royal耗子发布了新的文献求助10
17秒前
慕青应助诺贝尔一直讲采纳,获得30
18秒前
公西凝芙完成签到,获得积分10
18秒前
科研通AI6应助弎夜采纳,获得30
18秒前
langqi发布了新的文献求助10
19秒前
Miya发布了新的文献求助30
19秒前
20秒前
haobhaobhaob完成签到,获得积分10
22秒前
凯蒂发布了新的文献求助10
23秒前
25秒前
哎健身发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
momoni完成签到 ,获得积分10
27秒前
优秀的山芙关注了科研通微信公众号
28秒前
29秒前
豆豆可发布了新的文献求助10
31秒前
Olivia发布了新的文献求助10
34秒前
可爱的函函应助langqi采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542