Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的芷文应助卞笑采纳,获得10
刚刚
嘤嘤怪应助31313采纳,获得20
1秒前
早日毕业完成签到 ,获得积分10
3秒前
4秒前
5秒前
守望者1123完成签到,获得积分10
5秒前
5秒前
牛腩发布了新的文献求助10
6秒前
7秒前
7秒前
奋斗无敌发布了新的文献求助10
9秒前
10秒前
风中晓露发布了新的文献求助10
10秒前
小白发布了新的文献求助10
10秒前
李慧敏发布了新的文献求助10
12秒前
14秒前
打打应助哈哈哈采纳,获得10
14秒前
麦满分发布了新的文献求助10
15秒前
一一应助77采纳,获得10
15秒前
科研通AI2S应助蟹蟹采纳,获得10
15秒前
15秒前
111发布了新的文献求助10
16秒前
18秒前
上好完成签到,获得积分20
18秒前
21秒前
善学以致用应助herotim采纳,获得10
22秒前
22秒前
susan完成签到 ,获得积分10
22秒前
小白完成签到,获得积分10
24秒前
辇道增七完成签到,获得积分10
24秒前
25秒前
万能图书馆应助慢慢采纳,获得10
25秒前
25秒前
mxq完成签到,获得积分10
27秒前
29秒前
29秒前
29秒前
葡萄成熟发布了新的文献求助10
29秒前
雨眠发布了新的文献求助10
30秒前
斯文幻天完成签到,获得积分10
34秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3209864
求助须知:如何正确求助?哪些是违规求助? 2859364
关于积分的说明 8118873
捐赠科研通 2524878
什么是DOI,文献DOI怎么找? 1358527
科研通“疑难数据库(出版商)”最低求助积分说明 642814
邀请新用户注册赠送积分活动 614582