Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
weiv发布了新的文献求助10
1秒前
何包蛋完成签到,获得积分10
1秒前
御坂10576号完成签到 ,获得积分10
2秒前
2秒前
4秒前
情谊超爷完成签到,获得积分10
5秒前
机灵铭完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
MM完成签到,获得积分10
9秒前
pure完成签到 ,获得积分10
9秒前
浮游应助Su_Zehe采纳,获得10
9秒前
李健应助拼搏的学长采纳,获得10
11秒前
WXR发布了新的文献求助30
11秒前
何包蛋发布了新的文献求助10
12秒前
华仔应助留胡子的白柏采纳,获得30
12秒前
13秒前
大个应助邵shuo采纳,获得10
13秒前
普里克先森完成签到 ,获得积分10
15秒前
16秒前
123完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Owen应助阿华采纳,获得30
18秒前
18秒前
PetrichorF完成签到 ,获得积分10
18秒前
顺利发布了新的文献求助10
19秒前
科研通AI2S应助闹闹加油采纳,获得30
19秒前
20秒前
阿不思完成签到 ,获得积分10
21秒前
123发布了新的文献求助10
21秒前
852应助123456采纳,获得10
23秒前
zwxzghgz完成签到,获得积分10
23秒前
25秒前
拼搏的学长完成签到,获得积分10
25秒前
邵shuo发布了新的文献求助10
26秒前
lyyyyl发布了新的文献求助10
27秒前
研友_LpvQlZ发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370