Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助狗屁大侠采纳,获得10
刚刚
jli1856完成签到 ,获得积分10
1秒前
大个应助小吴同志采纳,获得10
1秒前
kangsynat完成签到 ,获得积分10
1秒前
朝阳完成签到,获得积分10
1秒前
wang发布了新的文献求助50
2秒前
王强完成签到,获得积分10
2秒前
进退须臾完成签到,获得积分10
2秒前
xr完成签到 ,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
3秒前
高高的采蓝完成签到,获得积分20
3秒前
食分子完成签到,获得积分20
4秒前
曾经的听枫完成签到,获得积分10
4秒前
大恩区完成签到,获得积分10
4秒前
斑马不一般完成签到,获得积分10
4秒前
DrW完成签到,获得积分0
5秒前
冰山未闯完成签到,获得积分10
5秒前
安全平静完成签到,获得积分10
5秒前
YB关闭了YB文献求助
6秒前
Crane18完成签到,获得积分10
6秒前
6秒前
badada完成签到,获得积分10
6秒前
斯文败类应助kk采纳,获得10
7秒前
7秒前
scihub111发布了新的文献求助10
7秒前
积极的尔竹完成签到,获得积分10
7秒前
嘎嘎嘎嘎发布了新的文献求助20
7秒前
沉默听芹完成签到,获得积分10
8秒前
李佳慧完成签到,获得积分10
8秒前
奋斗小公主完成签到,获得积分10
9秒前
Mrivy发布了新的文献求助10
9秒前
缓慢修杰完成签到,获得积分10
9秒前
路易斯完成签到,获得积分10
10秒前
han完成签到,获得积分10
10秒前
11秒前
绿色之梦完成签到 ,获得积分10
11秒前
彩色以南完成签到 ,获得积分10
12秒前
勾勾1991完成签到,获得积分10
13秒前
kk完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5021217
求助须知:如何正确求助?哪些是违规求助? 4259503
关于积分的说明 13273212
捐赠科研通 4065406
什么是DOI,文献DOI怎么找? 2223541
邀请新用户注册赠送积分活动 1232528
关于科研通互助平台的介绍 1156385