Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科学徐完成签到,获得积分20
刚刚
lkk发布了新的文献求助10
刚刚
清明发布了新的文献求助10
1秒前
1秒前
白熊发布了新的文献求助30
1秒前
1秒前
四叶草完成签到 ,获得积分10
1秒前
monned完成签到 ,获得积分10
1秒前
shauwy完成签到,获得积分10
2秒前
2秒前
富贵李完成签到,获得积分10
2秒前
2秒前
彭于晏应助Ly采纳,获得10
2秒前
yinyin完成签到,获得积分10
2秒前
zxj完成签到,获得积分10
3秒前
健忘的雨安完成签到,获得积分10
4秒前
闫永娟完成签到 ,获得积分10
4秒前
Mida完成签到,获得积分10
4秒前
34396992发布了新的文献求助10
5秒前
科学徐发布了新的文献求助10
5秒前
小小完成签到 ,获得积分10
5秒前
yaoxuer完成签到,获得积分10
5秒前
bc完成签到,获得积分10
5秒前
Mr咸蛋黄完成签到,获得积分10
6秒前
ash发布了新的文献求助10
6秒前
东方巧曼完成签到,获得积分10
6秒前
6秒前
wqwaf完成签到,获得积分10
7秒前
宫夏菡发布了新的文献求助10
7秒前
淡然的行完成签到,获得积分10
7秒前
木冉完成签到 ,获得积分10
7秒前
7秒前
无心的文龙完成签到,获得积分10
8秒前
黑怕怕不黑完成签到,获得积分10
8秒前
涣醒完成签到,获得积分10
8秒前
梅花鹿完成签到,获得积分10
8秒前
EYRE完成签到,获得积分10
9秒前
9秒前
9秒前
幽默的访冬完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413855
求助须知:如何正确求助?哪些是违规求助? 4530759
关于积分的说明 14124756
捐赠科研通 4445980
什么是DOI,文献DOI怎么找? 2439329
邀请新用户注册赠送积分活动 1431435
关于科研通互助平台的介绍 1409123