Cost-Sensitive GNN-Based Imbalanced Learning for Mobile Social Network Fraud Detection

计算机科学 机器学习 人工智能 图形 混淆矩阵 嵌入 移动社交网络 数据挖掘 移动计算 理论计算机科学 计算机网络
作者
Xinxin Hu,Haotian Chen,Hongchang Chen,Shuxin Liu,Xing Li,Shibo Zhang,Yahui Wang,Xiangyang Xue
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2675-2690 被引量:10
标识
DOI:10.1109/tcss.2023.3302651
摘要

In recent years, the increasing prevalence of mobile social network fraud has led to significant distress and depletion of personal and social wealth, resulting in considerable economic harm. Graph neural networks (GNNs) have emerged as a popular approach to tackle this issue. However, the challenge of graph imbalance, which can greatly impede the effectiveness of GNN-based fraud detection methods, has received little attention in prior research. Thus, we are going to present a novel cost-sensitive graph neural network (CSGNN) in this article. Initially, reinforcement learning is utilized to train a suitable sampling threshold, followed by neighbor sampling based on node similarity, which helps to alleviate the graph imbalance issue preliminarily. Subsequently, message aggregation is executed on the sampled graph using GNN to obtain node embeddings. Concurrently, the optimization objective for the cost matrix is formulated using the sample histogram matrix, scatter matrix, and confusion matrix. The cost matrix and GNN are collaboratively optimized through the backpropagation algorithm. Ultimately, the derived cost-sensitive node embedding is employed for fraudulent node detection. Furthermore, this study provides a theoretical demonstration of the effectiveness of adaptive cost-sensitive learning in GNN. Extensive experiments are carried out on two publicly accessible real-world mobile network fraud datasets, revealing that the proposed CSGNN effectively addresses the graph imbalance issue while outperforming state-of-the-art algorithms in detection performance. The CSGNN code and datasets can be accessed at https://github.com/xxhu94/CSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思琪HMH完成签到,获得积分10
刚刚
如7而至完成签到,获得积分10
1秒前
煊陌完成签到 ,获得积分10
3秒前
鲁楠完成签到,获得积分10
7秒前
万能图书馆应助简单宛秋采纳,获得10
8秒前
科研通AI5应助JJ采纳,获得10
8秒前
Akim应助HHEHK采纳,获得10
9秒前
11秒前
ICEBLUE完成签到,获得积分10
13秒前
Azhou完成签到,获得积分10
14秒前
CodeCraft应助dongdong采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
友芸发布了新的文献求助20
15秒前
veronicaaaa完成签到,获得积分10
16秒前
17秒前
无恙发布了新的文献求助10
17秒前
18秒前
dong应助安白采纳,获得10
18秒前
田様应助LY豪采纳,获得10
19秒前
19秒前
小丑发布了新的文献求助10
22秒前
生气来找我完成签到,获得积分10
23秒前
23秒前
oookkay发布了新的文献求助10
23秒前
冷水发布了新的文献求助10
23秒前
粥喝不喝发布了新的文献求助10
23秒前
24秒前
25秒前
细心柚子发布了新的文献求助10
25秒前
26秒前
26秒前
机灵晓露关注了科研通微信公众号
27秒前
小奎完成签到,获得积分10
27秒前
梦锂铧完成签到,获得积分10
27秒前
英姑应助huhu采纳,获得10
29秒前
29秒前
30秒前
JJ发布了新的文献求助10
30秒前
胡图图发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452