APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

纳米流体 机器学习 计算机科学 支持向量机 人工智能 人工神经网络 超参数 极限学习机 梯度升压 传热 热力学 随机森林 物理
作者
Young‐Suk Oh,Zhixiong Guo
出处
期刊:Heat transfer research [Begell House]
卷期号:55 (3): 39-60 被引量:9
标识
DOI:10.1615/heattransres.2023049494
摘要

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mariyette发布了新的文献求助10
1秒前
科研乞丐完成签到,获得积分0
1秒前
aaa发布了新的文献求助10
1秒前
Layla101完成签到,获得积分10
2秒前
叮当发布了新的文献求助10
3秒前
等等完成签到,获得积分10
4秒前
斯文的如风完成签到,获得积分20
4秒前
Stella应助dyk采纳,获得30
4秒前
Wuxia111发布了新的文献求助10
4秒前
lilium发布了新的文献求助10
4秒前
共享精神应助安静采纳,获得10
4秒前
诶诶完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
5秒前
木子完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
ji完成签到,获得积分10
7秒前
Chen完成签到,获得积分10
7秒前
gjy560完成签到,获得积分10
7秒前
7秒前
今天写论文了吗关注了科研通微信公众号
7秒前
8秒前
零零二发布了新的文献求助10
8秒前
8秒前
9秒前
花生酱发布了新的文献求助10
9秒前
semigreen完成签到 ,获得积分10
10秒前
10秒前
酷波er应助小晓俊采纳,获得10
10秒前
linya发布了新的文献求助10
10秒前
安静完成签到,获得积分10
11秒前
wujiasheng发布了新的文献求助30
11秒前
12秒前
科研小趴菜完成签到,获得积分10
12秒前
没心情Q发布了新的文献求助10
12秒前
1111完成签到,获得积分10
12秒前
12秒前
李爱国应助陈花蕾采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007