APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

纳米流体 机器学习 计算机科学 支持向量机 人工智能 人工神经网络 超参数 极限学习机 梯度升压 传热 热力学 随机森林 物理
作者
Young‐Suk Oh,Zhixiong Guo
出处
期刊:Heat transfer research [Begell House]
卷期号:55 (3): 39-60 被引量:1
标识
DOI:10.1615/heattransres.2023049494
摘要

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助loong采纳,获得10
刚刚
1秒前
2秒前
CipherSage应助caicai采纳,获得10
2秒前
4秒前
Dylan发布了新的文献求助10
4秒前
6秒前
Steven发布了新的文献求助10
7秒前
亿点点完成签到,获得积分10
7秒前
SCI_Q5裁缝大师完成签到,获得积分10
7秒前
波因斯坦发布了新的文献求助10
8秒前
8秒前
无敌发布了新的文献求助10
10秒前
12秒前
13秒前
14秒前
SYLH应助坚强幼晴采纳,获得10
15秒前
15秒前
噜噜发布了新的文献求助10
16秒前
Jayson完成签到,获得积分10
17秒前
vvan发布了新的文献求助10
17秒前
18秒前
liaodongjun应助健壮的怜烟采纳,获得21
19秒前
帅气白梦发布了新的文献求助10
20秒前
正直的西牛完成签到,获得积分10
20秒前
MOHO完成签到,获得积分10
21秒前
TH发布了新的文献求助10
21秒前
射天狼完成签到,获得积分10
23秒前
无敌完成签到,获得积分10
24秒前
24秒前
wqidoctor发布了新的文献求助10
25秒前
25秒前
牛哥完成签到 ,获得积分10
25秒前
大模型应助江辰汐月采纳,获得10
26秒前
晨屿完成签到,获得积分10
27秒前
oligo完成签到 ,获得积分10
27秒前
27秒前
Belinda完成签到 ,获得积分10
28秒前
28秒前
skr发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501