亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

纳米流体 机器学习 计算机科学 支持向量机 人工智能 人工神经网络 超参数 极限学习机 梯度升压 传热 热力学 随机森林 物理
作者
Young‐Suk Oh,Zhixiong Guo
出处
期刊:Heat transfer research [Begell House]
卷期号:55 (3): 39-60 被引量:9
标识
DOI:10.1615/heattransres.2023049494
摘要

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
简单的皮皮虾完成签到 ,获得积分10
33秒前
33秒前
月亮门完成签到 ,获得积分10
39秒前
baozi发布了新的文献求助10
40秒前
1分钟前
1分钟前
1分钟前
Akim应助安详宛筠采纳,获得10
2分钟前
2分钟前
安详宛筠发布了新的文献求助10
2分钟前
原子格致完成签到 ,获得积分10
2分钟前
安详宛筠完成签到,获得积分10
2分钟前
2分钟前
Aimee完成签到 ,获得积分10
2分钟前
qingshu发布了新的文献求助10
2分钟前
qingshu完成签到,获得积分10
3分钟前
3分钟前
1Yer6完成签到 ,获得积分10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
ycool完成签到 ,获得积分10
3分钟前
伯赏芷烟完成签到,获得积分10
5分钟前
睡觉补充能量完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
搜集达人应助Dr_WongRunFong采纳,获得10
7分钟前
Esperanza完成签到,获得积分10
7分钟前
Dr_WongRunFong完成签到,获得积分10
8分钟前
Wei发布了新的文献求助10
8分钟前
8分钟前
kkkk发布了新的文献求助10
8分钟前
8分钟前
领导范儿应助小小果妈采纳,获得10
9分钟前
大模型应助dkswy采纳,获得10
9分钟前
9分钟前
9分钟前
好好学习完成签到,获得积分20
9分钟前
9分钟前
好好学习发布了新的文献求助10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211034
求助须知:如何正确求助?哪些是违规求助? 4387624
关于积分的说明 13663026
捐赠科研通 4247643
什么是DOI,文献DOI怎么找? 2330421
邀请新用户注册赠送积分活动 1328191
关于科研通互助平台的介绍 1281017