APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

纳米流体 机器学习 计算机科学 支持向量机 人工智能 人工神经网络 超参数 极限学习机 梯度升压 传热 热力学 随机森林 物理
作者
Young‐Suk Oh,Zhixiong Guo
出处
期刊:Heat transfer research [Begell House Inc.]
卷期号:55 (3): 39-60 被引量:1
标识
DOI:10.1615/heattransres.2023049494
摘要

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助侦察兵采纳,获得10
1秒前
无花果应助子川采纳,获得10
2秒前
2秒前
爆米花应助龙歪歪采纳,获得10
4秒前
5秒前
5秒前
xxxqqq完成签到,获得积分10
6秒前
虚拟的觅山完成签到,获得积分10
7秒前
slj完成签到,获得积分10
8秒前
科研爱好者完成签到 ,获得积分10
8秒前
9秒前
ywang发布了新的文献求助10
10秒前
koial完成签到 ,获得积分10
11秒前
苏卿应助小xy采纳,获得10
11秒前
侦察兵发布了新的文献求助10
13秒前
14秒前
yyyy发布了新的文献求助50
14秒前
皇帝的床帘完成签到,获得积分10
15秒前
GXY完成签到,获得积分10
17秒前
xiuwen发布了新的文献求助10
17秒前
啦啦啦完成签到,获得积分10
17秒前
Umwandlung完成签到,获得积分10
19秒前
gorgeousgaga完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI5应助ipeakkka采纳,获得10
21秒前
852应助章家炜采纳,获得10
22秒前
Gauss应助张小汉采纳,获得30
24秒前
嘻嘻发布了新的文献求助10
24秒前
杰哥完成签到 ,获得积分10
25秒前
Ava应助赵小可可可可采纳,获得10
25秒前
科研通AI5应助kento采纳,获得30
26秒前
nkmenghan发布了新的文献求助10
27秒前
30秒前
redondo10完成签到,获得积分0
31秒前
32秒前
乔qiao发布了新的文献求助30
35秒前
WZ0904发布了新的文献求助10
36秒前
poegtam完成签到,获得积分10
37秒前
大胆盼兰发布了新的文献求助10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849