亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

纳米流体 机器学习 计算机科学 支持向量机 人工智能 人工神经网络 超参数 极限学习机 梯度升压 传热 热力学 随机森林 物理
作者
Young‐Suk Oh,Zhixiong Guo
出处
期刊:Heat transfer research [Begell House]
卷期号:55 (3): 39-60 被引量:1
标识
DOI:10.1615/heattransres.2023049494
摘要

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
40秒前
43秒前
量子星尘发布了新的文献求助10
44秒前
kokishi完成签到,获得积分10
1分钟前
辉哥完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
lo王一博_赵丽颖ve完成签到,获得积分10
2分钟前
2分钟前
朱宣诚发布了新的文献求助10
2分钟前
3分钟前
3分钟前
wukong完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI5应助朱宣诚采纳,获得10
3分钟前
噔噔蹬发布了新的文献求助10
3分钟前
CHF发布了新的文献求助10
3分钟前
3分钟前
CHF完成签到,获得积分10
3分钟前
朱宣诚发布了新的文献求助10
3分钟前
3分钟前
3分钟前
生命科学的第一推动力完成签到 ,获得积分10
4分钟前
4分钟前
上官若男应助zzb采纳,获得10
4分钟前
4分钟前
4分钟前
合适的楷瑞完成签到,获得积分10
4分钟前
4分钟前
zzb发布了新的文献求助10
4分钟前
4分钟前
4分钟前
噔噔蹬发布了新的文献求助10
4分钟前
图书馆发布了新的文献求助10
4分钟前
康康XY完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944967
求助须知:如何正确求助?哪些是违规求助? 4209640
关于积分的说明 13085653
捐赠科研通 3989647
什么是DOI,文献DOI怎么找? 2184248
邀请新用户注册赠送积分活动 1199558
关于科研通互助平台的介绍 1112737