Supervised screening of Tecovirimat-like compounds as potential inhibitors for the monkeypox virus E8L protein

对接(动物) 猴痘 计算生物学 化学 生物化学 生物 医学 兽医学 牛痘 基因 重组DNA
作者
Aamir Mehmood,Sadia Nawab,Guihua Jia,Aman Chandra Kaushik,Dong‐Qing Wei
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (15): 8100-8113 被引量:9
标识
DOI:10.1080/07391102.2023.2245042
摘要

AbstractMonkeypox virus (MPXV) is a budding public health threat worldwide, and there lacks a personalized drug availability to treat MPXV infections. Tecovirimat, an antiviral drug against pox viruses, is recently confirmed to be effective against the MPXV in vitro using nanomolar concentrations. Therefore, the current study considers Tecovirimat as a reference compound for a machine learning-based guided screening to scan bioactive compounds from the DrugBank with similar chemical features or moieties as the Tecovirimat to inhibit the MPXV E8L surface binding protein. We used AlphaFold2 to model the E8L's 3D structure, followed by the conformational activity investigation of shortlisted drugs through computational structural biology approaches, including molecular docking and molecular dynamics simulations. As a result, we have shortlisted five drugs named ABX-1431, Alflutinib, Avacopan, Caspitant, and Darapalib that effectively engage the MPXV surface binding protein. Furthermore, the affinity of the proposed drugs is relatively higher than the Tecovirimat by having higher docking scores, establishing more hydrogen and hydrophobic bonds, engaging key residues in the target's structure, and exhibiting stable molecular dynamics.Communicated by Ramaswamy H. SarmaKeywords: Supervised screeningmachine learningsurface binding proteinM.D. Simulation Disclosure statementThe authors declare no competing financial interest.Data availability statementThe input and output data from machine learning, molecular docking, and simulation are made openly accessible at https://github.com/iAamir3924/Monkeypox-virus-MPXV-Project.Additional informationFundingDong-Qing Wei is supported by grants from the National Science Foundation of China (Grant No. 32070662, 61832019, 32030063), the Science and Technology Commission of Shanghai Municipality (Grant No.: 19430750600), as well as SJTU JiRLMDS Joint Research Fund and Joint Research Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University (YG2021ZD02). The computations were partially performed at the Pengcheng Lab. and the Center for High-Performance Computing, Shanghai Jiao Tong University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉醉完成签到 ,获得积分10
刚刚
1秒前
欢喜发卡发布了新的文献求助10
2秒前
2秒前
彬子发布了新的文献求助10
3秒前
搜集达人应助惠耷采纳,获得10
3秒前
4秒前
5秒前
dropwater完成签到,获得积分10
7秒前
ding应助summuryi采纳,获得10
8秒前
ding应助酷炫怀莲采纳,获得10
8秒前
8秒前
9秒前
CipherSage应助Fn采纳,获得10
9秒前
小二郎应助viviancui采纳,获得10
11秒前
llls发布了新的文献求助10
11秒前
stk完成签到,获得积分10
13秒前
13秒前
13秒前
小二郎应助可靠的寒风采纳,获得10
14秒前
慕冰蝶完成签到,获得积分10
14秒前
搞怪迎夏发布了新的文献求助10
16秒前
janice完成签到,获得积分10
17秒前
17秒前
19秒前
summuryi发布了新的文献求助10
19秒前
斯文败类应助欢喜发卡采纳,获得10
20秒前
22秒前
viviancui发布了新的文献求助10
24秒前
24秒前
24秒前
可爱的函函应助文艺不凡采纳,获得10
26秒前
27秒前
29秒前
wws发布了新的文献求助20
29秒前
快乐滑板应助徐先森采纳,获得10
30秒前
31秒前
危机的茗发布了新的文献求助10
32秒前
33秒前
啊哈完成签到,获得积分10
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416105
求助须知:如何正确求助?哪些是违规求助? 3017776
关于积分的说明 8882583
捐赠科研通 2705363
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680795