延胡索酶
金属蛋白
化学
生物化学
半胱氨酸
蛋白质组
蛋白质水解
锌
酶
蛋白酵素
蛋白质组学
有机化学
基因
作者
Andrew N. Chan,Xiaoyan Chen,Julia A. Falco,Daniel W. Bak,Eranthie Weerapana,Бо Ли
标识
DOI:10.1021/acschembio.3c00360
摘要
The natural product holomycin contains a unique cyclic ene-disulfide and exhibits broad-spectrum antimicrobial activities. Reduced holomycin chelates metal ions with a high affinity and disrupts metal homeostasis in the cell. To identify cellular metalloproteins inhibited by holomycin, reactive-cysteine profiling was performed using isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). This chemoproteomic analysis demonstrated that holomycin treatment increases the reactivity of metal-coordinating cysteine residues in several zinc-dependent and iron-sulfur cluster-dependent enzymes, including carbonic anhydrase II and fumarase A. We validated that holomycin inhibits fumarase A activity in bacterial cells and diminishes the presence of iron-sulfur clusters in fumarase A. Whole-proteome abundance analysis revealed that holomycin treatment induces zinc and iron starvation and cellular stress. This study suggests that holomycin inhibits bacterial growth by impairing the functions of multiple metalloenzymes and sets the stage for investigating the impact of metal-binding molecules on metalloproteomes by using chemoproteomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI