束
部分各向异性
磁共振弥散成像
白质
生物标志物
下纵束
上纵束
纤维束成像
心理学
医学
纤维束
内科学
眼科
磁共振成像
放射科
生物
生物化学
作者
Ziyang Yu,Huize Pang,Hongmei Yu,Zhen Wu,Ding Zhi,Guoguang Fan
标识
DOI:10.1016/j.parkreldis.2023.105802
摘要
The neurobiological mechanisms and an early identification of MCI in idiopathic Parkinson's disease (IPD) remain unclear. To investigate the abnormalities of types of white matter (WM) fiber tracts segmentally and establish reliable indicator in IPD-MCI.Forty IPD with normal cognition (IPD-NCI), thirty IPD-MCI, and thirty healthy controls were included. Automated fiber quantification was applied to extract the fractional anisotropy (FA) and mean diffusivity (MD) values at 100 locations along the major fibers. Partial correlation was performed between diffusion values and cognitive performance. Furthermore, machine learning analyses were conducted to determine the imaging biomarker of MCI. Permutation tests were performed to evaluate the pointwise differences under the FWE correction.IPD-MCI had similar but more severe and widespread WM degeneration in the association, projection, and commissural fibers compared with IPD-NCI. Meanwhile, IPD-MCI showed distinct degeneration pattern in the association fibers. The FA of the anterior segment of right inferior fronto-occipital fasciculus (IFOF) was positively correlated with MoCA (P < 0.05) and executive function (P < 0.05). The MD of the middle and posterior segment of left superior longitudinal fasciculus (SLF) was negatively correlated with MoCA P < 0.05), executive (P < 0.05), visuospatial function (P < 0.05). Furthermore, the AUC of support vector machine model was 0.80 in the validation dataset. The FA of anterior segment of right IFOF contribute the most.This study demonstrated that regional tract-specific microstructural degeneration, especially the association fibers, can be used to predict MCI in IPD. Especially, the right IFOF may be a significant imaging biomarker in predicting IPD with MCI.
科研通智能强力驱动
Strongly Powered by AbleSci AI