Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides

材料科学 生物分子 纳米 纳米结构 纳米技术 光电子学 波长 复合材料
作者
Qingxue Gao,Peilin Zang,Jinze Li,Wei Zhang,Zhiqi Zhang,Chao Li,Jia Yao,Chuanyu Li,Qi Yang,Shuli Li,Zhen Guo,Lianqun Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (42): 49511-49526 被引量:1
标识
DOI:10.1021/acsami.3c11077
摘要

Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
曾经二娘发布了新的文献求助10
1秒前
罗罗完成签到,获得积分10
1秒前
reck完成签到,获得积分10
1秒前
2秒前
李白白发布了新的文献求助30
2秒前
auiin发布了新的文献求助10
2秒前
傲娇的婷完成签到,获得积分20
3秒前
3秒前
小寒完成签到,获得积分20
3秒前
3秒前
YooM发布了新的文献求助10
4秒前
七厘米完成签到,获得积分20
4秒前
4秒前
希望天下0贩的0应助DZWyyyy采纳,获得10
4秒前
4秒前
6秒前
Jasper应助又听风雨采纳,获得10
6秒前
Aurora发布了新的文献求助10
7秒前
7秒前
在水一方应助66666采纳,获得30
7秒前
7秒前
8秒前
8秒前
豆子发布了新的文献求助10
8秒前
uery完成签到,获得积分10
9秒前
9秒前
Meng完成签到,获得积分10
9秒前
davidz发布了新的文献求助10
9秒前
思源应助曾经二娘采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Rober发布了新的文献求助10
10秒前
小蘑菇应助可耐的乐菱采纳,获得10
11秒前
共享精神应助lwl采纳,获得10
11秒前
11秒前
搜集达人应助平常的蜜粉采纳,获得10
11秒前
11秒前
瀼瀼发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769630
求助须知:如何正确求助?哪些是违规求助? 5580702
关于积分的说明 15422304
捐赠科研通 4903300
什么是DOI,文献DOI怎么找? 2638156
邀请新用户注册赠送积分活动 1586055
关于科研通互助平台的介绍 1541154