Enhancing the Resolution of Micro-CT Images of Rock Samples via Unsupervised Machine Learning based on a Diffusion Model

岩石物理学 人工智能 计算机科学 地质学 算法 岩土工程 多孔性
作者
Zhaoyang Ma,Shuyu Sun,Bicheng Yan,Hyung Kwak,Jun Gao
出处
期刊:SPE Annual Technical Conference and Exhibition 被引量:4
标识
DOI:10.2118/214883-ms
摘要

Objectives/Scope X-ray Micro-Computer Tomography (μ-CT) has been widely adopted in earth science and petroleum engineering due to its non-destructive characteristic. Meanwhile, this three-dimensional-imaging method can be integrated with computer simulation to investigate petrophysical properties of reservoir rocks at pore scales. However, the application of μ-CT is limited by the trade-off between field of view and resolution, and it is challenging to indicate the pore structure of rocks, especially for shale or carbonate rocks. To address this issue, deep-learning-based super-resolution techniques have rapidly developed in the past few years. Methodology In this study, a super-resolution algorithm based on the state-of-the-art (STOA) diffusion model is proposed to generate super-resolved CT images for carbonate rocks. The proposed method adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Cascaded diffusion model is utilized to increase the training speed and generate high fidelity CT images. This method exhibits superior performance in the resolution-enhancement of CT images at various magnification factors (with a large scaling factor of up to 16) without the occurrence of image-noise and image-blurring issue, and the super-resolved CT images performs well for the calculation of petrophysical properties of carbonate rocks. Results This algorithm is applied to the carbonate rock and the performance of the diffusion model is evaluated by quantitative extraction and qualitative visualization. In addition, this method is compared with other methods, such as GAN, Variational Autoencoder, and Super-Resolution Convolutional Neural Networks (SRCNN). The results indicate that the built model shows excellent potential in enhancing the resolution of heterogeneous carbonate rocks. To be specific, the super-resolved images exhibit clear and sharp edges and a detailed pore network. In addition, it performs well on different upscaling factors (up to 16) and is superior to the existing super-resolution approaches (for both supervised and unsupervised algorithms). This study provides a novel deep-learning-based method using a diffusion model to enhance the resolution of μ-CT images of carbonate rocks (up to 16). Novelty The novelty of this study is three-fold. First, this method belongs to unsupervised learning, indicating that pairs of high-resolution and low-resolution CT images are no longer needed. Second, a large scaling factor (up to 16) is reached without an image-blurring issue, which normally occurs in other deep-learning-based super-resolution algorithms. Third, the quality of super-resolved images is promising and faithful when compared with other generated learning methods, such as Generative Adversarial Networks (GAN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
adonis1发布了新的文献求助10
1秒前
迟大猫应助糖糖糖唐采纳,获得10
1秒前
可可关注了科研通微信公众号
2秒前
wenwen发布了新的文献求助10
2秒前
隐形曼青应助gaos采纳,获得10
4秒前
4秒前
我能行发布了新的文献求助10
5秒前
852应助无心采纳,获得10
5秒前
5秒前
haha发布了新的文献求助10
6秒前
李昕123完成签到,获得积分10
6秒前
love发布了新的文献求助10
8秒前
8秒前
chuckle完成签到,获得积分10
10秒前
心念完成签到,获得积分10
10秒前
李健应助CDI和LIB采纳,获得10
10秒前
Orange应助wenwen采纳,获得10
10秒前
斯文的若颜应助52pry采纳,获得10
11秒前
深情安青应助lovesxj941采纳,获得10
11秒前
hongw_liu完成签到,获得积分10
12秒前
12秒前
anan应助x1981采纳,获得10
12秒前
至秦发布了新的文献求助10
13秒前
龙妍琳发布了新的文献求助10
13秒前
13秒前
白大猛发布了新的文献求助10
13秒前
优雅的雁凡完成签到,获得积分10
13秒前
你好完成签到,获得积分10
14秒前
江一山发布了新的文献求助10
15秒前
15秒前
shardowzx完成签到,获得积分10
15秒前
NMZN发布了新的文献求助10
16秒前
小孙孙完成签到,获得积分10
16秒前
FashionBoy应助VPN不好用采纳,获得10
18秒前
shardowzx发布了新的文献求助10
18秒前
CLL完成签到 ,获得积分10
18秒前
20秒前
jyzxzr完成签到,获得积分10
20秒前
江一山完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522849
求助须知:如何正确求助?哪些是违规求助? 3103786
关于积分的说明 9267447
捐赠科研通 2800458
什么是DOI,文献DOI怎么找? 1536934
邀请新用户注册赠送积分活动 715309
科研通“疑难数据库(出版商)”最低求助积分说明 708693