医学
肝细胞癌
磁共振成像
磁共振弥散成像
病态的
多元分析
放射科
单变量分析
优势比
内科学
胃肠病学
核医学
作者
Hongxian Gu,Xiaoshan Huang,Jianxia Xu,Ping Zhu,Jianfeng Xu,Shuli Fan
标识
DOI:10.1007/s10278-023-00888-9
摘要
Abstract This study aimed to explore the magnetic resonance imaging (MRI) features of dual-phenotype hepatocellular carcinoma (DPHCC) and their diagnostic value.The data of 208 patients with primary liver cancer were retrospectively analysed between January 2016 and June 2021. Based on the pathological diagnostic criteria, 27 patients were classified into the DPHCC group, 113 patients into the noncholangiocyte-phenotype hepatocellular carcinoma (NCPHCC) group, and 68 patients with intrahepatic cholangiocarcinoma (ICC) were classified into the ICC group. Two abdominal radiologists reviewed the preoperative MRI features by a double-blind method. The MRI features and key laboratory and clinical indicators were compared between the groups. The potentially valuable MRI features and key laboratory and clinical characteristics for predicting DPHCC were identified by univariate and multivariate analyses, and the odds ratios (ORs) were recorded. In multivariate analysis, tumour without capsule (P = 0.046, OR = 9.777), dynamic persistent enhancement (P = 0.006, OR = 46.941), and targetoid appearance on diffusion-weighted imaging (DWI) (P = 0.021, OR = 30.566) were independently significant factors in the detection of DPHCC compared to NCPHCC. Serum alpha-fetoprotein (AFP) > 20 µg/L (P = 0.036, OR = 67.097) and prevalence of hepatitis B virus (HBV) infection (P = 0.020, OR = 153.633) were independent significant factors in predicting DPHCC compared to ICC. The differences in other tumour marker levels and imaging features between the groups were not significant. In MR enhanced and diffusion imaging, tumour without capsule, persistent enhancement and DWI targetoid findings, combined with AFP > 20 µg/L and HBV infection-positive laboratory results, can help to diagnose DPHCC and differentiate it from NCPHCC and ICC. These results suggest that clinical, laboratory and MRI features should be integrated to construct an AI diagnostic model for DPHCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI