冰川
冰期
生物多样性
气候变化
生态系统
淡水生态系统
自然地理学
全球变暖
环境科学
生态学
地理
环境资源管理
地质学
地貌学
生物
作者
Jean‐Baptiste Bosson,Matthias Huss,Sophie Cauvy‐Fraunié,Jean‐Christophe Clément,Guillaume Costes,Mauro Fischer,Jérôme Poulenard,Florent Arthaud
出处
期刊:Nature
[Springer Nature]
日期:2023-08-16
卷期号:620 (7974): 562-569
被引量:55
标识
DOI:10.1038/s41586-023-06302-2
摘要
Glacier shrinkage and the development of post-glacial ecosystems related to anthropogenic climate change are some of the fastest ongoing ecosystem shifts, with marked ecological and societal cascading consequences1-6. Yet, no complete spatial analysis exists, to our knowledge, to quantify or anticipate this important changeover7,8. Here we show that by 2100, the decline of all glaciers outside the Antarctic and Greenland ice sheets may produce new terrestrial, marine and freshwater ecosystems over an area ranging from the size of Nepal (149,000 ± 55,000 km2) to that of Finland (339,000 ± 99,000 km2). Our analysis shows that the loss of glacier area will range from 22 ± 8% to 51 ± 15%, depending on the climate scenario. In deglaciated areas, the emerging ecosystems will be characterized by extreme to mild ecological conditions, offering refuge for cold-adapted species or favouring primary productivity and generalist species. Exploring the future of glacierized areas highlights the importance of glaciers and emerging post-glacial ecosystems in the face of climate change, biodiversity loss and freshwater scarcity. We find that less than half of glacial areas are located in protected areas. Echoing the recent United Nations resolution declaring 2025 as the International Year of Glaciers' Preservation9 and the Global Biodiversity Framework10, we emphasize the need to urgently and simultaneously enhance climate-change mitigation and the in situ protection of these ecosystems to secure their existence, functioning and values.
科研通智能强力驱动
Strongly Powered by AbleSci AI