A data-driven approach for predicting the ballistic resistance of elastoplastic materials

弹道冲击 弹道极限 射弹 结构工程 可预测性 实验数据 材料科学 断裂(地质) 本构方程 机械 扭转(腹足类) 有限元法 计算机科学 工程类 数学 复合材料 物理 外科 冶金 统计 医学
作者
Xin Li,Ziqi Li,Yang Chen,Chao Zhang
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:293: 109706-109706 被引量:2
标识
DOI:10.1016/j.engfracmech.2023.109706
摘要

Data-driven methods and machine learning methods provide efficient and accurate approaches for solving impact problems. In this paper, a data-driven approach is proposed for numerical simulations of ballistic impact behavior for elastoplastic materials. An enhanced rate-dependent scheme is employed for improving the predictability of the data-driven constitutive model. A new method that introduces a stress triaxiality indicator to three separate constitutive models is proposed to consider the discrepancy between the mechanical responses of materials under tension, compression, and shear. Additionally, a modified Bai-Wierzbicki fracture criterion considering the strain rate effect and the stress-state effect is used to evaluate the fracture behavior of the materials during impact simulations. Subsequently, a compatible numerical implementation algorithm that considers loading, unloading, and reverse loading is established to enable the application of the data-driven approach in finite element simulations. Numerical validation of the proposed data-driven approach is conducted through several simple loading examples, such as cyclic loading, torsional loading, and tension–torsion combined loading. The data-driven approach is then employed to simulate the ballistic impact behavior of Ti-6Al-4V targets of different thicknesses that are struck by blunt projectiles. Impact properties—including the relationship between residual velocity and impact velocity, ballistic limit velocities, and fracture paths—are comprehensively studied. The results demonstrate the reasonable predictability and accuracy of the data-driven approach when applied to ballistic impact simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助YS采纳,获得10
1秒前
CodeCraft应助干红采纳,获得10
1秒前
1秒前
xuan发布了新的文献求助30
2秒前
2秒前
熊世凯发布了新的文献求助10
2秒前
2秒前
虚心香彤发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
无言完成签到,获得积分10
6秒前
万能图书馆应助韩孟霏采纳,获得10
6秒前
普鲁卡因发布了新的文献求助30
6秒前
小杭76应助zhou采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
FashionBoy应助全球少女的梦采纳,获得10
9秒前
水牛完成签到,获得积分10
9秒前
zhaoxin发布了新的文献求助10
10秒前
任全强发布了新的文献求助10
10秒前
11秒前
12秒前
研友_VZG7GZ应助王泽采纳,获得10
12秒前
12秒前
大胆的雨完成签到,获得积分20
12秒前
完美世界应助余姚采纳,获得10
13秒前
初次见面发布了新的文献求助10
13秒前
靈二完成签到 ,获得积分10
13秒前
畅快代柔完成签到,获得积分10
13秒前
14秒前
xx_sci完成签到,获得积分10
15秒前
zoey完成签到,获得积分10
15秒前
Ava应助幸运的尔芙采纳,获得10
15秒前
tian发布了新的文献求助30
16秒前
科研通AI2S应助jijiguo采纳,获得10
16秒前
学习爱我给学习爱我的求助进行了留言
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292