A data-driven approach for predicting the ballistic resistance of elastoplastic materials

弹道冲击 弹道极限 射弹 结构工程 可预测性 实验数据 材料科学 断裂(地质) 本构方程 机械 扭转(腹足类) 有限元法 计算机科学 工程类 数学 复合材料 物理 外科 冶金 统计 医学
作者
Xin Li,Ziqi Li,Yang Chen,Chao Zhang
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:293: 109706-109706 被引量:2
标识
DOI:10.1016/j.engfracmech.2023.109706
摘要

Data-driven methods and machine learning methods provide efficient and accurate approaches for solving impact problems. In this paper, a data-driven approach is proposed for numerical simulations of ballistic impact behavior for elastoplastic materials. An enhanced rate-dependent scheme is employed for improving the predictability of the data-driven constitutive model. A new method that introduces a stress triaxiality indicator to three separate constitutive models is proposed to consider the discrepancy between the mechanical responses of materials under tension, compression, and shear. Additionally, a modified Bai-Wierzbicki fracture criterion considering the strain rate effect and the stress-state effect is used to evaluate the fracture behavior of the materials during impact simulations. Subsequently, a compatible numerical implementation algorithm that considers loading, unloading, and reverse loading is established to enable the application of the data-driven approach in finite element simulations. Numerical validation of the proposed data-driven approach is conducted through several simple loading examples, such as cyclic loading, torsional loading, and tension–torsion combined loading. The data-driven approach is then employed to simulate the ballistic impact behavior of Ti-6Al-4V targets of different thicknesses that are struck by blunt projectiles. Impact properties—including the relationship between residual velocity and impact velocity, ballistic limit velocities, and fracture paths—are comprehensively studied. The results demonstrate the reasonable predictability and accuracy of the data-driven approach when applied to ballistic impact simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
南南发布了新的文献求助30
1秒前
1秒前
楠瓜发布了新的文献求助10
3秒前
科研通AI6应助醒醒采纳,获得10
4秒前
小方汪汪汪完成签到,获得积分10
4秒前
yz123发布了新的文献求助10
6秒前
3123939715完成签到,获得积分10
6秒前
暴躁的以山完成签到,获得积分10
6秒前
Jasper应助yz123采纳,获得10
11秒前
科研通AI6应助楠瓜采纳,获得80
11秒前
繁荣的沛白完成签到,获得积分10
13秒前
13秒前
Zhao完成签到,获得积分10
14秒前
16秒前
玛斯特尔完成签到,获得积分10
17秒前
璿_发布了新的文献求助30
17秒前
18秒前
zca完成签到 ,获得积分10
18秒前
精明的听寒完成签到,获得积分10
18秒前
朱朱发布了新的文献求助10
19秒前
小蘑菇应助王贵康采纳,获得30
19秒前
英姑应助南南采纳,获得10
20秒前
21秒前
大个应助科研通管家采纳,获得10
23秒前
Fairy应助科研通管家采纳,获得10
23秒前
无心客应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933