A data-driven approach for predicting the ballistic resistance of elastoplastic materials

弹道冲击 弹道极限 射弹 结构工程 可预测性 实验数据 材料科学 断裂(地质) 本构方程 机械 扭转(腹足类) 有限元法 计算机科学 工程类 数学 复合材料 物理 外科 冶金 统计 医学
作者
Xin Li,Ziqi Li,Yang Chen,Chao Zhang
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:293: 109706-109706 被引量:2
标识
DOI:10.1016/j.engfracmech.2023.109706
摘要

Data-driven methods and machine learning methods provide efficient and accurate approaches for solving impact problems. In this paper, a data-driven approach is proposed for numerical simulations of ballistic impact behavior for elastoplastic materials. An enhanced rate-dependent scheme is employed for improving the predictability of the data-driven constitutive model. A new method that introduces a stress triaxiality indicator to three separate constitutive models is proposed to consider the discrepancy between the mechanical responses of materials under tension, compression, and shear. Additionally, a modified Bai-Wierzbicki fracture criterion considering the strain rate effect and the stress-state effect is used to evaluate the fracture behavior of the materials during impact simulations. Subsequently, a compatible numerical implementation algorithm that considers loading, unloading, and reverse loading is established to enable the application of the data-driven approach in finite element simulations. Numerical validation of the proposed data-driven approach is conducted through several simple loading examples, such as cyclic loading, torsional loading, and tension–torsion combined loading. The data-driven approach is then employed to simulate the ballistic impact behavior of Ti-6Al-4V targets of different thicknesses that are struck by blunt projectiles. Impact properties—including the relationship between residual velocity and impact velocity, ballistic limit velocities, and fracture paths—are comprehensively studied. The results demonstrate the reasonable predictability and accuracy of the data-driven approach when applied to ballistic impact simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助Damocles采纳,获得20
2秒前
BANG发布了新的文献求助10
3秒前
3秒前
www发布了新的文献求助20
4秒前
dmj发布了新的文献求助10
4秒前
5秒前
5秒前
Yimi完成签到,获得积分10
6秒前
源儿完成签到,获得积分10
6秒前
Liou发布了新的文献求助50
6秒前
tomato完成签到,获得积分10
7秒前
Youdge应助冷静的铅笔采纳,获得20
8秒前
盒子发布了新的文献求助10
8秒前
10秒前
LL发布了新的文献求助10
10秒前
mov完成签到,获得积分10
10秒前
chen完成签到,获得积分10
11秒前
mu完成签到,获得积分20
11秒前
桐桐应助笔墨留香采纳,获得10
12秒前
小马甲应助BANG采纳,获得10
13秒前
冯东关注了科研通微信公众号
13秒前
momo完成签到,获得积分10
16秒前
摇滚谬中庸完成签到 ,获得积分10
16秒前
18秒前
18秒前
研友_ngKyqn发布了新的文献求助10
19秒前
斯文败类应助小马哥采纳,获得10
19秒前
Olivergaga完成签到,获得积分20
20秒前
himsn完成签到,获得积分10
20秒前
lidongxing完成签到,获得积分10
22秒前
笔墨留香发布了新的文献求助10
23秒前
YN完成签到,获得积分10
23秒前
博修发布了新的文献求助10
25秒前
mu发布了新的文献求助30
26秒前
沉默冬卉发布了新的文献求助10
26秒前
小蘑菇应助小勇仔采纳,获得10
28秒前
6小瓶子完成签到,获得积分10
30秒前
NexusExplorer应助siyuwang1234采纳,获得10
31秒前
34秒前
烟花应助沉默冬卉采纳,获得10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182