A data-driven approach for predicting the ballistic resistance of elastoplastic materials

弹道冲击 弹道极限 射弹 结构工程 可预测性 实验数据 材料科学 断裂(地质) 本构方程 机械 扭转(腹足类) 有限元法 计算机科学 工程类 数学 复合材料 物理 外科 冶金 统计 医学
作者
Xin Li,Ziqi Li,Yang Chen,Chao Zhang
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:293: 109706-109706 被引量:2
标识
DOI:10.1016/j.engfracmech.2023.109706
摘要

Data-driven methods and machine learning methods provide efficient and accurate approaches for solving impact problems. In this paper, a data-driven approach is proposed for numerical simulations of ballistic impact behavior for elastoplastic materials. An enhanced rate-dependent scheme is employed for improving the predictability of the data-driven constitutive model. A new method that introduces a stress triaxiality indicator to three separate constitutive models is proposed to consider the discrepancy between the mechanical responses of materials under tension, compression, and shear. Additionally, a modified Bai-Wierzbicki fracture criterion considering the strain rate effect and the stress-state effect is used to evaluate the fracture behavior of the materials during impact simulations. Subsequently, a compatible numerical implementation algorithm that considers loading, unloading, and reverse loading is established to enable the application of the data-driven approach in finite element simulations. Numerical validation of the proposed data-driven approach is conducted through several simple loading examples, such as cyclic loading, torsional loading, and tension–torsion combined loading. The data-driven approach is then employed to simulate the ballistic impact behavior of Ti-6Al-4V targets of different thicknesses that are struck by blunt projectiles. Impact properties—including the relationship between residual velocity and impact velocity, ballistic limit velocities, and fracture paths—are comprehensively studied. The results demonstrate the reasonable predictability and accuracy of the data-driven approach when applied to ballistic impact simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
2秒前
2秒前
kakashi完成签到,获得积分10
2秒前
nuonuo发布了新的文献求助10
2秒前
梦里的大子刊完成签到 ,获得积分10
3秒前
4秒前
大模型应助猪猪hero采纳,获得10
5秒前
张乐发布了新的文献求助30
6秒前
Jenny712发布了新的文献求助10
7秒前
LYH完成签到,获得积分10
8秒前
健壮从霜发布了新的文献求助10
9秒前
10秒前
10秒前
lanjq兰坚强完成签到,获得积分10
11秒前
12秒前
ttt完成签到,获得积分10
13秒前
情怀应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Cleo应助科研通管家采纳,获得10
14秒前
14秒前
wlscj应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
evvj发布了新的文献求助10
15秒前
华仔应助科研通管家采纳,获得30
15秒前
无限的灵阳完成签到 ,获得积分20
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
wanci应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
15秒前
lawang发布了新的文献求助20
15秒前
amberzyc应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315