A global profiling strategy for identification of the total constituents in Chinese herbal medicine based on online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with intelligentized chemical classification guidance

化学 四极飞行时间 色谱法 质谱法 萜烯 化学成分 串联质谱法 有机化学
作者
Kunze Du,Tianyu Liu,Wentao Ma,Jiading Guo,Shujing Chen,Jiake Wen,Rui Zhou,Yan Cui,Shuangqi Wang,Li Li,Jin Li,Yanxu Chang
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1710: 464387-464387 被引量:5
标识
DOI:10.1016/j.chroma.2023.464387
摘要

A comprehensive strategy for effective identification of total constituents in Chinese patent medicine has been advanced applying full scan-preferred parent ions capture-static and active exclusion (FS-PIC-SAE) acquisition coupled with intelligent deep-learning supported mass defect filter (MDF) process, with Naoxintong capsule (NXT) as a case. Online comprehensive two-dimensional liquid chromatography (2DLC) coupled with Q-TOF-MS/MS system was established for obtaining the excellent separation and detection performance of total components, which could exhibit excellent peak capacity with 1052 and orthogonality with 0.69. In addition, a total of 901 unknown compounds could be classified into nine chemical classes rapidly and effectively, based on the intelligent deep-learning algorithm supported MDF model with 96.4% accuracy. Consequently, 276 compounds were successfully identified from NXT, especially including 44 flavonoids, 27 phenolic acids, 25 fatty acids, 17 saponins, 21 phthalocyanines, 20 triterpenes, 10 monoterpenes, 13 diterpenoid ketones, 14 amino acids, and others. It is concluded that the proposed program is an effective and practical strategy enabling the in-depth chemical profiling of complex herbal and biological samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
刚刚
2秒前
3秒前
Wmin发布了新的文献求助20
3秒前
可以发布了新的文献求助10
4秒前
俭朴萧完成签到,获得积分10
5秒前
6秒前
丰富怜烟完成签到,获得积分10
8秒前
顾矜应助顺心凡采纳,获得10
8秒前
李爱国应助小小旭呀采纳,获得10
8秒前
8秒前
8秒前
pp完成签到,获得积分10
8秒前
8秒前
9秒前
俭朴萧发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
刻苦秋烟完成签到,获得积分10
10秒前
小明同学发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
严笑容发布了新的文献求助30
12秒前
xj发布了新的文献求助10
13秒前
momo完成签到 ,获得积分10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
我喜欢大学霸完成签到,获得积分10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
佰斯特威应助Ultraviolet采纳,获得10
13秒前
严笑容发布了新的文献求助30
13秒前
严笑容发布了新的文献求助30
13秒前
严笑容发布了新的文献求助10
13秒前
严笑容发布了新的文献求助30
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794