Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction

可解释性 黑匣子 燃料效率 特征(语言学) 灵活性(工程) 计算机科学 变量(数学) 白盒子 消费(社会学) 广义加性模型 预测建模 人工智能 机器学习 数学优化 工程类 数学 汽车工程 统计 社会学 哲学 数学分析 语言学 社会科学
作者
Haoqing Wang,Ran Yan,Shuaian Wang,Lu Zhen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:157: 104361-104361 被引量:3
标识
DOI:10.1016/j.trc.2023.104361
摘要

Ship fuel consumption is a major component of maritime transport costs and most of its emissions are harmful to the environment. Hence, it is essential to build an accurate ship fuel consumption prediction model, thereby providing reference to the navigation operations. However, maritime industry experts are wary of advanced black-box models since they cannot interpret the outcomes of these models. The application of advanced black-box models in the shipping industry remains limited and it is necessary to develop both accurate and interpretable ship fuel consumption prediction models. This study uses domain knowledge to develop two innovative methods for predicting ship fuel consumption—the first is a physics-informed neural network (PI-NN) model that improves the interpretability of the black-box model while maintaining accuracy and the second is a mixed-integer quadratic optimization (MIO) model that considers more forms of feature variable expressions in an additive white-box model. The proposed approaches address the tradeoff between model interpretability and model accuracy in ship fuel consumption prediction. The experiment results demonstrate that the PI-NN model improves the interpretability of the black-box model while preserving accuracy. The MIO model considers alternative variable expressions, leading to the flexibility of the white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to explain how each feature value contributes to the predictions of the black-box model, thereby providing insights into how each value of feature variables affects fuel consumption. This study provides a solution to the tradeoff between model interpretability and model accuracy and can promote the application of data-driven models in ship fuel consumption prediction. Moreover, this study gives implications for the application of explainable machine learning models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉衡发布了新的文献求助10
刚刚
yao chen完成签到,获得积分10
刚刚
朵拉完成签到,获得积分10
刚刚
由清涟完成签到,获得积分10
1秒前
Drhan完成签到,获得积分10
1秒前
FashionBoy应助断数循环采纳,获得10
1秒前
姣妹崽完成签到,获得积分10
1秒前
马一凡完成签到,获得积分0
1秒前
上官若男应助lan199623采纳,获得10
2秒前
俗人完成签到,获得积分10
2秒前
cangye发布了新的文献求助10
2秒前
Dotgene发布了新的文献求助10
2秒前
wanci应助CO2采纳,获得10
2秒前
joker发布了新的文献求助10
2秒前
SciGPT应助小超采纳,获得10
2秒前
2秒前
malubest完成签到,获得积分10
3秒前
华仔应助朴素的玫瑰采纳,获得30
3秒前
开心的饼干完成签到,获得积分10
4秒前
不会搞科研完成签到,获得积分0
4秒前
4秒前
4秒前
今年我必胖20斤完成签到,获得积分10
4秒前
4秒前
nini完成签到,获得积分10
5秒前
搜集达人应助1234采纳,获得10
6秒前
6秒前
Hwen完成签到,获得积分10
6秒前
susu完成签到,获得积分10
6秒前
英姑应助冷静飞柏采纳,获得10
7秒前
8秒前
8秒前
9秒前
Ryan发布了新的文献求助10
9秒前
10秒前
10秒前
cangye完成签到,获得积分10
10秒前
温暖霸完成签到,获得积分10
10秒前
JINX发布了新的文献求助10
11秒前
卉酱发布了新的文献求助30
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600