Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction

可解释性 黑匣子 燃料效率 特征(语言学) 灵活性(工程) 计算机科学 变量(数学) 白盒子 消费(社会学) 广义加性模型 预测建模 人工智能 机器学习 数学优化 工程类 数学 汽车工程 统计 数学分析 社会科学 语言学 哲学 社会学
作者
Haoqing Wang,Ran Yan,Shuaian Wang,Lu Zhen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:157: 104361-104361 被引量:3
标识
DOI:10.1016/j.trc.2023.104361
摘要

Ship fuel consumption is a major component of maritime transport costs and most of its emissions are harmful to the environment. Hence, it is essential to build an accurate ship fuel consumption prediction model, thereby providing reference to the navigation operations. However, maritime industry experts are wary of advanced black-box models since they cannot interpret the outcomes of these models. The application of advanced black-box models in the shipping industry remains limited and it is necessary to develop both accurate and interpretable ship fuel consumption prediction models. This study uses domain knowledge to develop two innovative methods for predicting ship fuel consumption—the first is a physics-informed neural network (PI-NN) model that improves the interpretability of the black-box model while maintaining accuracy and the second is a mixed-integer quadratic optimization (MIO) model that considers more forms of feature variable expressions in an additive white-box model. The proposed approaches address the tradeoff between model interpretability and model accuracy in ship fuel consumption prediction. The experiment results demonstrate that the PI-NN model improves the interpretability of the black-box model while preserving accuracy. The MIO model considers alternative variable expressions, leading to the flexibility of the white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to explain how each feature value contributes to the predictions of the black-box model, thereby providing insights into how each value of feature variables affects fuel consumption. This study provides a solution to the tradeoff between model interpretability and model accuracy and can promote the application of data-driven models in ship fuel consumption prediction. Moreover, this study gives implications for the application of explainable machine learning models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助Tonald Yang采纳,获得10
刚刚
DaDA完成签到 ,获得积分10
刚刚
红炉点血完成签到,获得积分10
1秒前
所所应助ljzfj采纳,获得10
1秒前
玩命的外套完成签到,获得积分10
1秒前
科研通AI5应助青枣不甜采纳,获得10
2秒前
sci完成签到 ,获得积分10
2秒前
老木虫发布了新的文献求助10
2秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
4秒前
5秒前
落后冬云完成签到 ,获得积分10
5秒前
小羊闲庭信步完成签到,获得积分10
7秒前
小许完成签到 ,获得积分10
8秒前
Jess2147应助net80yhm采纳,获得10
9秒前
忐忑的草丛完成签到,获得积分10
10秒前
SUN完成签到,获得积分10
12秒前
阿达完成签到 ,获得积分10
13秒前
13秒前
老迟到的土豆完成签到 ,获得积分10
14秒前
dajiejie完成签到 ,获得积分10
14秒前
lcsolar完成签到,获得积分10
17秒前
和谐续完成签到 ,获得积分10
18秒前
笑林完成签到 ,获得积分10
18秒前
lemon完成签到,获得积分10
18秒前
听寒完成签到,获得积分10
19秒前
Yanzhi完成签到,获得积分10
19秒前
ym完成签到,获得积分10
20秒前
依依完成签到,获得积分10
21秒前
奔铂儿钯完成签到,获得积分10
22秒前
落叶完成签到 ,获得积分10
23秒前
hahaha完成签到,获得积分10
23秒前
CoCo完成签到 ,获得积分10
24秒前
25秒前
bill完成签到,获得积分10
29秒前
风信子deon01完成签到,获得积分10
29秒前
老四完成签到,获得积分10
30秒前
chengxue完成签到,获得积分10
30秒前
littleE完成签到 ,获得积分0
31秒前
顺利毕业完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758276
求助须知:如何正确求助?哪些是违规求助? 3301170
关于积分的说明 10116620
捐赠科研通 3015623
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766