Innovative approaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption prediction

可解释性 黑匣子 燃料效率 特征(语言学) 灵活性(工程) 计算机科学 变量(数学) 白盒子 消费(社会学) 广义加性模型 预测建模 人工智能 机器学习 数学优化 工程类 数学 汽车工程 统计 数学分析 社会科学 语言学 哲学 社会学
作者
Haoqing Wang,Ran Yan,Shuaian Wang,Lu Zhen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:157: 104361-104361 被引量:3
标识
DOI:10.1016/j.trc.2023.104361
摘要

Ship fuel consumption is a major component of maritime transport costs and most of its emissions are harmful to the environment. Hence, it is essential to build an accurate ship fuel consumption prediction model, thereby providing reference to the navigation operations. However, maritime industry experts are wary of advanced black-box models since they cannot interpret the outcomes of these models. The application of advanced black-box models in the shipping industry remains limited and it is necessary to develop both accurate and interpretable ship fuel consumption prediction models. This study uses domain knowledge to develop two innovative methods for predicting ship fuel consumption—the first is a physics-informed neural network (PI-NN) model that improves the interpretability of the black-box model while maintaining accuracy and the second is a mixed-integer quadratic optimization (MIO) model that considers more forms of feature variable expressions in an additive white-box model. The proposed approaches address the tradeoff between model interpretability and model accuracy in ship fuel consumption prediction. The experiment results demonstrate that the PI-NN model improves the interpretability of the black-box model while preserving accuracy. The MIO model considers alternative variable expressions, leading to the flexibility of the white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to explain how each feature value contributes to the predictions of the black-box model, thereby providing insights into how each value of feature variables affects fuel consumption. This study provides a solution to the tradeoff between model interpretability and model accuracy and can promote the application of data-driven models in ship fuel consumption prediction. Moreover, this study gives implications for the application of explainable machine learning models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L.发布了新的文献求助20
刚刚
Verdigris完成签到,获得积分10
1秒前
cindy完成签到,获得积分10
1秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
1秒前
金色热浪完成签到 ,获得积分10
1秒前
快去读文献完成签到,获得积分20
1秒前
斯文静曼完成签到,获得积分10
1秒前
1秒前
1秒前
拼搏思卉关注了科研通微信公众号
2秒前
2秒前
liudiqiu应助酷酷的起眸采纳,获得10
2秒前
研友_8yN60L发布了新的文献求助10
2秒前
所所应助VDC采纳,获得10
2秒前
xxq发布了新的文献求助30
2秒前
xzy发布了新的文献求助20
3秒前
Linanana完成签到,获得积分10
3秒前
3秒前
贾舒涵发布了新的文献求助10
3秒前
Sunrise完成签到,获得积分10
4秒前
HH完成签到,获得积分10
5秒前
科研通AI2S应助飞羽采纳,获得10
5秒前
风中寄云完成签到,获得积分20
5秒前
故意的傲玉应助毛慢慢采纳,获得10
5秒前
5秒前
小白发布了新的文献求助10
5秒前
6秒前
6秒前
马尼拉发布了新的文献求助10
7秒前
CodeCraft应助dildil采纳,获得10
7秒前
7秒前
cyanpomelo完成签到 ,获得积分10
8秒前
8秒前
微笑高山完成签到 ,获得积分10
8秒前
文献查找发布了新的文献求助10
8秒前
加油完成签到,获得积分20
9秒前
Sunrise发布了新的文献求助10
9秒前
tabor发布了新的文献求助10
9秒前
唐妮完成签到,获得积分10
9秒前
啵清啵完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759