3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for multifunctional electronic devices

材料科学 弹性体 离子液体 韧性 佩多:嘘 聚合 纤维素 人工肌肉 化学工程 离子电导率 聚苯胺 电导率 聚合物 纳米技术 复合材料 电极 电解质 有机化学 化学 计算机科学 物理化学 人工智能 工程类 执行机构 催化作用
作者
Chuanwei Lu,Xinyu Wang,Qianqian Jia,Shijian Xu,Chunpeng Wang,Shuo Du,Jifu Wang,Qiang Yong,Fuxiang Chu
出处
期刊:Carbohydrate Polymers [Elsevier BV]
卷期号:324: 121496-121496 被引量:33
标识
DOI:10.1016/j.carbpol.2023.121496
摘要

Ionic gel-based wearable electronic devices with robust sensing performance have gained extensive attention. However, the development of mechanical robustness, high conductivity, and customizable bio-based ionic gel for multifunctional wearable sensors still is a challenge. Herein, we first report the preparation of 3D printed cellulose derived ionic conductive elastomers (ICEs) with high mechanical toughness, high conductivity, and excellent environment stability through one-step photo-polymerization of polymerizable deep eutectic solvents. In the ICEs, carboxylate cellulose nanocrystals (C-CNCs) were used as a bio-template for the in-situ polymerization of the aniline to avoid the aggregation of polyaniline and yield a high conductivity (58.7 mS/m). More importantly, the well-defined structural design combining multiple hydrogen bonds with strong coordination bonds endows the ICEs with extremely high mechanical strength (4.4 MPa), toughness (13.33 MJ*m−3), high elasticity and excellent environment stability. Given by these features, the ICE was utilized to assemble multifunctional strain, humidity, and temperature sensors for real-time and reliable detection the human motions, respiration, and body temperature. This work provides a promising strategy for designing the new generation of strong, tough bio-based ionic gel for multifunctional wearable electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dicy发布了新的文献求助10
1秒前
JamesPei应助暗号采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Starry发布了新的文献求助10
3秒前
上官若男应助诺一44采纳,获得10
4秒前
酷波er应助Catalysis123采纳,获得10
4秒前
4秒前
林布林发布了新的文献求助10
5秒前
5秒前
xiaoyu123发布了新的文献求助10
5秒前
6秒前
zyq发布了新的文献求助10
6秒前
Hyp完成签到 ,获得积分10
8秒前
9秒前
高兴梦竹发布了新的文献求助10
9秒前
9秒前
时势造英雄完成签到 ,获得积分10
9秒前
任蛹完成签到,获得积分10
10秒前
高兴幼旋发布了新的文献求助10
10秒前
wx完成签到,获得积分10
10秒前
11秒前
情怀应助zengyangyu采纳,获得30
11秒前
bkagyin应助阁下宛歆采纳,获得10
12秒前
12秒前
13秒前
犇骉完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助100
15秒前
15秒前
latata发布了新的文献求助10
15秒前
16秒前
17秒前
爱笑苡给爱笑苡的求助进行了留言
17秒前
17秒前
18秒前
lls发布了新的文献求助10
18秒前
xu发布了新的文献求助10
18秒前
水木年华发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433