Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution

化学 电化学 组合化学 缓蚀剂 腐蚀 生物系统 化学工程 物理化学 计算化学 有机化学 工程类 生物 电极
作者
F. E. Abeng,Valentine Chikaodili Anadebe
出处
期刊:Computational and Theoretical Chemistry [Elsevier]
卷期号:1229: 114334-114334 被引量:35
标识
DOI:10.1016/j.comptc.2023.114334
摘要

In this work, Doxorubicin drug was used as mild steel corrosion inhibitor in 0.5 M H2SO4 solution. Herein, standard techniques like gravimetric, electrochemical measurement, density functional theory via DFT/ molecular dynamic simulation (MDS), Scanning electron microscopic (SEM), were used for proper evaluation of Doxorubicin drug as anticorrosive agent. According to the experimental findings, Doxorubicin drug significantly inhibits mild steel corrosion, and its effectiveness increases with an increase in the drug concentration. Maximum inhibition efficiency at 100 ppm was 93.3 %, 91.3 % and 96.8 % for electrochemical impedance (EIS), polarization test (PDP) and gravimetric techniques respectively. The electrochemical study indicates that Doxorubicin is a mixed-type inhibitor. Close scrutiny of the corroded and inhibited metals evidenced that Doxorubicin drug produced a better and more uniform coating on the surface of mild steel. The molecular structure of the drug and its contribution to the inhibition mechanism was further understood using simulations based on density functional theory (DFT) and molecular dynamics simulation (MDS). In addition, artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were used to predict and model the interactive effects affecting the response. Also, statistical parameters like coefficient of determination (R2), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute deviation (MAD) were used to assess the models' performance. The results demonstrate that the FCM-clustered ANFIS model with 15 clusters perform better than ANN model with RMSE, MAD, MAPE, and R2values of 0.978, 0.642, 4.823, and 0.9925 at the testing phase, and 0.6435, 0.4248, 2.8151, and 0.9998 at the training phase respectively. The best prediction was made using complete FCM-ANFIS model, which had accuracy of 98.4 %. Hence, a robust system prediction can be achieved via ANN and ANFIS algorithms to predict corrosion inhibition of mild steel in acidic environment using drug based corrosion inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
有魅力荟发布了新的文献求助10
4秒前
十三完成签到 ,获得积分10
10秒前
111完成签到 ,获得积分10
19秒前
Jenny完成签到,获得积分10
21秒前
Qiuyu完成签到 ,获得积分10
35秒前
isedu完成签到,获得积分10
39秒前
45秒前
简单幸福完成签到 ,获得积分10
45秒前
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
俏皮的若雁完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
1分钟前
loren313完成签到,获得积分0
1分钟前
俏皮的松鼠完成签到 ,获得积分10
1分钟前
清秀的怀蕊完成签到 ,获得积分10
2分钟前
英俊的铭应助cpqiu采纳,获得10
2分钟前
2分钟前
momo完成签到,获得积分10
2分钟前
cpqiu发布了新的文献求助10
2分钟前
cpqiu完成签到,获得积分10
2分钟前
2分钟前
alexlpb完成签到,获得积分10
3分钟前
好了完成签到,获得积分10
3分钟前
宗师算个瓢啊完成签到 ,获得积分10
3分钟前
3分钟前
有魅力荟发布了新的文献求助10
3分钟前
DocChen完成签到,获得积分10
3分钟前
3分钟前
火星上小土豆完成签到 ,获得积分10
3分钟前
又又完成签到,获得积分10
3分钟前
Oct完成签到 ,获得积分10
3分钟前
czj完成签到 ,获得积分10
3分钟前
领导范儿应助allsunday采纳,获得10
3分钟前
3分钟前
DocChen发布了新的文献求助10
3分钟前
luan完成签到 ,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371320
求助须知:如何正确求助?哪些是违规求助? 2989504
关于积分的说明 8735960
捐赠科研通 2672697
什么是DOI,文献DOI怎么找? 1464197
科研通“疑难数据库(出版商)”最低求助积分说明 677422
邀请新用户注册赠送积分活动 668732