已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DDEL-15. EXPLORING THE USE OF MACHINE LEARNING TO PREDICT BLOOD BRAIN BARRIER PERMEABILITY OF DRUG MOLECULES

人工智能 计算机科学 学习迁移 机器学习 卷积神经网络 深度学习 支持向量机 人工神经网络
作者
Megan Lim,Wael Hassaneen Mostafa
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v104-v104
标识
DOI:10.1093/neuonc/noad179.0394
摘要

Abstract The blood-brain barrier (BBB) is a selective boundary of the central nervous system (CNS) that plays a critical role in protecting the brain microenvironment by allowing passage of certain molecules. Clinical experiments accurately determine which chemotherapy drugs effectively cross the BBB to reach the tumor site but are also time consuming and labor intensive. Machine learning offers the ability to rapidly screen large datasets of drug molecules and assess their potential for CNS therapeutic effect. The goal of this study is to compare the performance across machine learning, deep learning, and transfer learning methods in predicting BBB permeability on public drug datasets. The dataset used for training and validation was composed of 7,807 compounds compiled from 50 published resources. The machine and deep learning methods used in this study included support vector machines (SVMs), deep neural networks (DNNs), and graph convolutional neural networks (GCNNs). For transfer learning, we first trained DNN models to a single quantum chemical property before appending neural network layers and retraining to the new task of BBB permeability. The prediction accuracies on the validation set for SVM, DNN, GCNN, transfer learning of polarizability, and transfer learning of dipole moment were 82.33%, 83.09%, 87.14%, 76.89%, and 70.23%, respectively. Overall, the results indicate that GCNN was the best performing model. This highlights GCNNs ability to learn the molecular features most relevant to the predictive task in the first stage of the algorithm. Future work entails expanding the set of input features to include key chemical and structural information such as the presence or absence of certain functional groups as well as training more transfer learning models to other quantum chemical properties. This study further motivates the predictive capability of machine learning methods in identifying drug compounds with potential CNS-activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速弘文完成签到,获得积分10
5秒前
核桃小丸子完成签到 ,获得积分10
10秒前
小蘑菇应助迅速弘文采纳,获得10
10秒前
kannnliannn完成签到 ,获得积分10
13秒前
nonoNOSHEEP完成签到 ,获得积分10
14秒前
清森完成签到 ,获得积分10
15秒前
18秒前
19秒前
21秒前
cheng完成签到 ,获得积分10
21秒前
big佳发布了新的文献求助10
24秒前
聪慧的斑马完成签到,获得积分20
24秒前
绵绵完成签到 ,获得积分10
27秒前
xjcy应助Captain采纳,获得10
28秒前
jyy关闭了jyy文献求助
30秒前
鹰隼游完成签到 ,获得积分10
32秒前
Grace完成签到 ,获得积分10
35秒前
Benjamin完成签到 ,获得积分10
36秒前
三三完成签到 ,获得积分10
38秒前
38秒前
Orange应助菩提本无树采纳,获得10
46秒前
XHW完成签到 ,获得积分10
47秒前
不带走一片面包完成签到 ,获得积分10
47秒前
48秒前
简单的paper完成签到 ,获得积分10
50秒前
Minerva完成签到,获得积分10
54秒前
54秒前
一言矣完成签到 ,获得积分10
1分钟前
默默完成签到,获得积分10
1分钟前
1分钟前
1分钟前
PhD_Lee73完成签到 ,获得积分10
1分钟前
jyy发布了新的文献求助10
1分钟前
源远流长发布了新的文献求助10
1分钟前
静待花开发布了新的文献求助10
1分钟前
亚克西完成签到,获得积分10
1分钟前
1分钟前
狗十七完成签到 ,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
共享精神应助柳致远采纳,获得10
1分钟前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219617
求助须知:如何正确求助?哪些是违规求助? 2868402
关于积分的说明 8160932
捐赠科研通 2535466
什么是DOI,文献DOI怎么找? 1367931
科研通“疑难数据库(出版商)”最低求助积分说明 645118
邀请新用户注册赠送积分活动 618457