Event-Driven Video Restoration With Spiking-Convolutional Architecture

计算机科学 卷积神经网络 人工智能 去模糊 事件(粒子物理) 模式识别(心理学) 计算机视觉 图像复原 图像处理 图像(数学) 物理 量子力学
作者
Chengzhi Cao,Xueyang Fu,Yingjie Zhu,Zhenghao Sun,Zheng-Jun Zha
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3329741
摘要

With high temporal resolution, high dynamic range, and low latency, event cameras have made great progress in numerous low-level vision tasks. To help restore low-quality (LQ) video sequences, most existing event-based methods usually employ convolutional neural networks (CNNs) to extract sparse event features without considering the spatial sparse distribution or the temporal relation in neighboring events. It brings about insufficient use of spatial and temporal information from events. To address this problem, we propose a new spiking-convolutional network (SC-Net) architecture to facilitate event-driven video restoration. Specifically, to properly extract the rich temporal information contained in the event data, we utilize a spiking neural network (SNN) to suit the sparse characteristics of events and capture temporal correlation in neighboring regions; to make full use of spatial consistency between events and frames, we adopt CNNs to transform sparse events as an extra brightness prior to being aware of detailed textures in video sequences. In this way, both the temporal correlation in neighboring events and the mutual spatial information between the two types of features are fully explored and exploited to accurately restore detailed textures and sharp edges. The effectiveness of the proposed network is validated in three representative video restoration tasks: deblurring, super-resolution, and deraining. Extensive experiments on synthetic and real-world benchmarks have illuminated that our method performs better than existing competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dery发布了新的文献求助10
1秒前
Jasper应助体贴的冥王星采纳,获得10
3秒前
Kate应助beikeyy采纳,获得10
5秒前
樟寿完成签到,获得积分10
5秒前
柴犬完成签到,获得积分10
5秒前
7秒前
郝君颖完成签到 ,获得积分10
10秒前
柴犬发布了新的文献求助10
11秒前
空域完成签到,获得积分10
16秒前
温馨完成签到 ,获得积分10
17秒前
小星星完成签到 ,获得积分10
17秒前
闫栋完成签到 ,获得积分10
18秒前
林先生完成签到,获得积分10
19秒前
眠眠清完成签到 ,获得积分10
24秒前
美丽的鞋垫完成签到 ,获得积分10
24秒前
33秒前
LQ完成签到,获得积分10
33秒前
LonelyCMA完成签到 ,获得积分10
34秒前
eyu完成签到,获得积分10
34秒前
可爱的函函应助YL采纳,获得10
37秒前
42秒前
tuanzi发布了新的文献求助10
47秒前
苯二氮卓完成签到,获得积分10
49秒前
洁净之柔完成签到,获得积分20
54秒前
风信子完成签到,获得积分10
55秒前
1分钟前
科研通AI2S应助LickyLu采纳,获得10
1分钟前
顺风顺水顺财神完成签到 ,获得积分10
1分钟前
tuanzi完成签到 ,获得积分10
1分钟前
rayqiang完成签到,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
InfoNinja应助科研通管家采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
sunphor完成签到 ,获得积分10
1分钟前
1分钟前
熊泰山完成签到 ,获得积分10
1分钟前
ommphey完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176