Event-Driven Video Restoration With Spiking-Convolutional Architecture

计算机科学 卷积神经网络 人工智能 去模糊 事件(粒子物理) 模式识别(心理学) 计算机视觉 图像复原 图像处理 图像(数学) 量子力学 物理
作者
Chengzhi Cao,Xueyang Fu,Yurui Zhu,Zhijing Sun,Zheng-Jun Zha
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2023.3329741
摘要

With high temporal resolution, high dynamic range, and low latency, event cameras have made great progress in numerous low-level vision tasks. To help restore low-quality (LQ) video sequences, most existing event-based methods usually employ convolutional neural networks (CNNs) to extract sparse event features without considering the spatial sparse distribution or the temporal relation in neighboring events. It brings about insufficient use of spatial and temporal information from events. To address this problem, we propose a new spiking-convolutional network (SC-Net) architecture to facilitate event-driven video restoration. Specifically, to properly extract the rich temporal information contained in the event data, we utilize a spiking neural network (SNN) to suit the sparse characteristics of events and capture temporal correlation in neighboring regions; to make full use of spatial consistency between events and frames, we adopt CNNs to transform sparse events as an extra brightness prior to being aware of detailed textures in video sequences. In this way, both the temporal correlation in neighboring events and the mutual spatial information between the two types of features are fully explored and exploited to accurately restore detailed textures and sharp edges. The effectiveness of the proposed network is validated in three representative video restoration tasks: deblurring, super-resolution, and deraining. Extensive experiments on synthetic and real-world benchmarks have illuminated that our method performs better than existing competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱自由民权完成签到,获得积分10
刚刚
hang完成签到,获得积分10
刚刚
酷波er应助岁月神偷采纳,获得10
1秒前
1秒前
1秒前
shanhai发布了新的文献求助10
1秒前
1秒前
2秒前
lilacs完成签到 ,获得积分10
2秒前
张倩发布了新的文献求助20
2秒前
11111发布了新的文献求助10
2秒前
4秒前
QQ酱发布了新的文献求助10
4秒前
84W1yX发布了新的文献求助10
4秒前
4秒前
慕凛完成签到 ,获得积分20
5秒前
5秒前
二十四桥发布了新的文献求助10
6秒前
6秒前
7秒前
Hello应助小丁采纳,获得10
7秒前
小袁发布了新的文献求助10
8秒前
8秒前
PRL发布了新的文献求助10
8秒前
思源应助kohu采纳,获得10
8秒前
万能图书馆应助bbb采纳,获得10
9秒前
李健应助真实的天蓉采纳,获得10
9秒前
9秒前
Tempo完成签到,获得积分10
9秒前
低温少年发布了新的文献求助10
10秒前
相思完成签到,获得积分20
10秒前
顶刊在逃一作完成签到,获得积分10
10秒前
田格本完成签到,获得积分10
11秒前
4所得税d发布了新的文献求助10
12秒前
肘汁派发布了新的文献求助10
12秒前
袁不评发布了新的文献求助20
12秒前
ding应助skskysky采纳,获得10
12秒前
ZYY完成签到,获得积分10
12秒前
miya完成签到,获得积分10
13秒前
啦啦咔嘞发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771