纳米棒
手性(物理)
等离子体子
材料科学
纳米颗粒
分子
圆二色性
旋光
化学物理
纳米技术
计算化学
结晶学
化学
手征对称破缺
对称性破坏
有机化学
光电子学
物理
量子力学
Nambu–Jona Lasinio模型
作者
Lingling Zhang,Yilin Chen,Jiapeng Zheng,George R. Lewis,Xinyue Xia,Emilie Ringe,Wei Zhang,Jianfang Wang
标识
DOI:10.1002/anie.202312615
摘要
Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI