内分泌学
内科学
达帕格列嗪
尿钠
血压
医学
利尿
重吸收
肾功能
肾肥大
醛固酮
肾素-血管紧张素系统
肾
血糖性
人口
钠
糖尿病
化学
2型糖尿病
糖尿病肾病
环境卫生
有机化学
作者
Olha Kravtsova,Vladislav Levchenko,Christine A. Klemens,Timo Rieg,Ruisheng Liu,Alexander Staruschenko
标识
DOI:10.1038/s41598-023-46016-z
摘要
Abstract Sodium-glucose co-transporters (SGLTs) in the kidneys play a pivotal role in glucose reabsorption. Several clinical and population-based studies revealed the beneficial effects of SGLT2 inhibition on hypertension. Recent work from our lab provided significant new insight into the role of SGLT2 inhibition in a non-diabetic model of salt-sensitive hypertension, Dahl salt-sensitive (SS) rats. Dapagliflozin (Dapa) blunted the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the Renin–Angiotensin–Aldosterone System. However, our initial study used male SS rats only, and the effect of SGLT2 inhibitors on hypertension in females has not been studied. Therefore, the goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function in female Dahl SS rats. The result showed that administration of Dapa for 3 weeks prevented the progression of salt-induced hypertension in female rats, similar to its effects in male SS rats. Diuresis and glucose excretion were significantly increased in Dapa-treated rats. SGLT2 inhibition also significantly attenuated kidney but not heart fibrosis. Despite significant effects on blood pressure, Dapa treatment caused minor changes to electrolyte balance and no effects on kidney and heart weights were observed. Our data suggest that SGLT2 inhibition in a non-diabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension independent of sex.
科研通智能强力驱动
Strongly Powered by AbleSci AI