lncLocator-imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization

计算机科学 人工智能 亚细胞定位 卷积神经网络 机器学习 深度学习 计算生物学 生物 基因 生物化学
作者
Haibin Liu,Dianguo Li,Hao Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 538-547 被引量:9
标识
DOI:10.1109/jbhi.2023.3324709
摘要

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡定乐天完成签到 ,获得积分10
1秒前
美好焦发布了新的文献求助10
1秒前
舒适行云发布了新的文献求助10
1秒前
2秒前
3秒前
米糊发布了新的文献求助10
3秒前
Jeffy应助寒雪无忆曲江南采纳,获得10
3秒前
慕青应助伯言采纳,获得10
4秒前
余点完成签到,获得积分10
4秒前
5秒前
大个应助MMM采纳,获得30
5秒前
哟哟哟完成签到,获得积分10
5秒前
6秒前
lynn应助方法采纳,获得10
6秒前
继往开来完成签到,获得积分10
6秒前
qq596完成签到,获得积分10
7秒前
ZPJ发布了新的文献求助10
7秒前
科研通AI2S应助haonanchen采纳,获得10
7秒前
Owen应助Lily采纳,获得10
7秒前
CipherSage应助墩墩采纳,获得10
7秒前
活力毛豆完成签到 ,获得积分10
9秒前
klj应助zd采纳,获得50
9秒前
9秒前
在水一方应助何小雨采纳,获得10
9秒前
Hello应助ltt采纳,获得10
9秒前
Jack完成签到,获得积分10
9秒前
10秒前
汉堡包应助暖风采纳,获得10
10秒前
mneos发布了新的文献求助10
11秒前
11秒前
精明书包发布了新的文献求助10
11秒前
学术牛马完成签到,获得积分10
11秒前
@_@完成签到,获得积分0
11秒前
搞怪人雄完成签到,获得积分10
11秒前
现代的访曼应助风栖乔梧采纳,获得20
11秒前
12秒前
照九州完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180