lncLocator-imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization

计算机科学 人工智能 亚细胞定位 卷积神经网络 机器学习 深度学习 计算生物学 生物 基因 生物化学
作者
Haibin Liu,Dianguo Li,Hao Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 538-547 被引量:9
标识
DOI:10.1109/jbhi.2023.3324709
摘要

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范范完成签到,获得积分10
刚刚
su发布了新的文献求助10
1秒前
龙海完成签到 ,获得积分10
1秒前
victor完成签到,获得积分10
2秒前
timeless完成签到 ,获得积分10
4秒前
华仔应助小v1212采纳,获得10
6秒前
6秒前
科研通AI6应助zedzed采纳,获得10
7秒前
7秒前
冬虫夏草完成签到,获得积分10
7秒前
求助人员发布了新的文献求助30
8秒前
陈一会完成签到 ,获得积分10
8秒前
沉静的含海完成签到,获得积分20
8秒前
阿烨完成签到,获得积分10
10秒前
明理慕灵应助zzy采纳,获得10
11秒前
熊猫海发布了新的文献求助10
11秒前
Joseph_sss完成签到 ,获得积分10
12秒前
roro熊发布了新的文献求助10
12秒前
12秒前
光之霓裳完成签到 ,获得积分10
13秒前
彭于晏应助Azhe采纳,获得10
14秒前
14秒前
Zp发布了新的文献求助10
14秒前
Annie发布了新的文献求助10
15秒前
科研通AI6应助zedzed采纳,获得10
15秒前
华仔应助幸福台灯采纳,获得10
16秒前
俭朴舞仙完成签到,获得积分10
17秒前
慕容雅柏发布了新的文献求助10
20秒前
小恐龙飞飞完成签到 ,获得积分10
20秒前
熊猫海完成签到,获得积分10
20秒前
21秒前
23秒前
24秒前
深情安青应助sky采纳,获得10
25秒前
牙ya完成签到,获得积分20
25秒前
26秒前
刘威琦完成签到,获得积分10
26秒前
Azhe发布了新的文献求助10
26秒前
田様应助明理慕灵采纳,获得10
27秒前
壮观梦易发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281