lncLocator-imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization

计算机科学 人工智能 亚细胞定位 卷积神经网络 机器学习 深度学习 计算生物学 生物 基因 生物化学
作者
Haibin Liu,Dianguo Li,Hao Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 538-547 被引量:9
标识
DOI:10.1109/jbhi.2023.3324709
摘要

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
尹雪儿完成签到,获得积分10
4秒前
智挂东南枝完成签到,获得积分10
5秒前
7777777发布了新的文献求助10
6秒前
7秒前
9秒前
9秒前
汉堡包应助sky采纳,获得10
10秒前
小海绵完成签到,获得积分10
11秒前
hlll完成签到 ,获得积分10
11秒前
危机的慕卉完成签到 ,获得积分10
12秒前
Criminology34应助双儿采纳,获得10
12秒前
周才完成签到 ,获得积分10
12秒前
高兴的小馒头完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
niki完成签到,获得积分20
16秒前
God_wei3完成签到,获得积分10
16秒前
16秒前
16秒前
HaniRxf完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
19秒前
含蓄的三颜完成签到,获得积分10
21秒前
Dick发布了新的文献求助10
21秒前
21秒前
蓝天发布了新的文献求助10
21秒前
zaaaz完成签到,获得积分10
22秒前
赘婿应助tidongzhiwu采纳,获得10
22秒前
22秒前
无极微光应助王艳采纳,获得20
22秒前
壮观的莺完成签到 ,获得积分10
23秒前
WMT完成签到 ,获得积分10
23秒前
urologywang发布了新的文献求助30
23秒前
雪白的康发布了新的文献求助50
24秒前
科研通AI2S应助现代代桃采纳,获得10
27秒前
27秒前
27秒前
壮观的莺关注了科研通微信公众号
27秒前
28秒前
比格蹦蹦发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734809
求助须知:如何正确求助?哪些是违规求助? 5356250
关于积分的说明 15327788
捐赠科研通 4879347
什么是DOI,文献DOI怎么找? 2621815
邀请新用户注册赠送积分活动 1571046
关于科研通互助平台的介绍 1527826