lncLocator-imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization

计算机科学 人工智能 亚细胞定位 卷积神经网络 机器学习 深度学习 计算生物学 生物 基因 生物化学
作者
Haibin Liu,Dianguo Li,Hao Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 538-547 被引量:9
标识
DOI:10.1109/jbhi.2023.3324709
摘要

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aibi发布了新的文献求助10
刚刚
柚子完成签到,获得积分10
1秒前
青苔完成签到,获得积分10
1秒前
小桔啊完成签到 ,获得积分10
2秒前
汉堡包应助微风往事采纳,获得10
2秒前
2秒前
qyhl完成签到,获得积分10
3秒前
热心的诗蕊完成签到,获得积分10
3秒前
4秒前
在水一方应助chen采纳,获得10
4秒前
英俊的铭应助Yi采纳,获得10
4秒前
ywuuu完成签到,获得积分10
5秒前
5秒前
maomaozi完成签到,获得积分10
5秒前
苗烨霖发布了新的文献求助10
5秒前
orixero应助rrrrrrry采纳,获得10
6秒前
天棱完成签到,获得积分10
6秒前
852应助猪猪猪采纳,获得10
8秒前
俊逸若剑发布了新的文献求助10
8秒前
Banff完成签到,获得积分10
9秒前
9秒前
勤劳元瑶完成签到,获得积分10
9秒前
9秒前
CodeCraft应助qyhl采纳,获得10
9秒前
天棱发布了新的文献求助10
10秒前
10秒前
风趣尔冬完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
lalafish应助米酒对瓶吹采纳,获得10
11秒前
12秒前
缥缈灵煌完成签到,获得积分20
12秒前
猫臭完成签到,获得积分10
13秒前
小波发布了新的文献求助10
13秒前
MCS完成签到,获得积分10
13秒前
小灰灰完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
leng完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723